我使用PIL将使用Django上传的透明PNG图像转换为JPG文件。输出看起来很糟糕。
Image.open(object.logo.path).save('/tmp/output.jpg', 'JPEG')
或
Image.open(object.logo.path).convert('RGB').save('/tmp/output.png')
两种方式,生成的图像如下所示:
有没有办法解决这个问题?我希望透明背景的白色背景。
由于答案很好,我提出了以下功能集:
import Image
import numpy as np
def alpha_to_color(image, color=(255, 255, 255)):
"""Set all fully transparent pixels of an RGBA image to the specified color.
This is a very simple solution that might leave over some ugly edges, due
to semi-transparent areas. You should use alpha_composite_with color instead.
Source: http://stackoverflow.com/a/9166671/284318
Keyword Arguments:
image -- PIL RGBA Image object
color -- Tuple r, g, b (default 255, 255, 255)
"""
x = np.array(image)
r, g, b, a = np.rollaxis(x, axis=-1)
r[a == 0] = color[0]
g[a == 0] = color[1]
b[a == 0] = color[2]
x = np.dstack([r, g, b, a])
return Image.fromarray(x, 'RGBA')
def alpha_composite(front, back):
"""Alpha composite two RGBA images.
Source: http://stackoverflow.com/a/9166671/284318
Keyword Arguments:
front -- PIL RGBA Image object
back -- PIL RGBA Image object
"""
front = np.asarray(front)
back = np.asarray(back)
result = np.empty(front.shape, dtype='float')
alpha = np.index_exp[:, :, 3:]
rgb = np.index_exp[:, :, :3]
falpha = front[alpha] / 255.0
balpha = back[alpha] / 255.0
result[alpha] = falpha + balpha * (1 - falpha)
old_setting = np.seterr(invalid='ignore')
result[rgb] = (front[rgb] * falpha + back[rgb] * balpha * (1 - falpha)) / result[alpha]
np.seterr(**old_setting)
result[alpha] *= 255
np.clip(result, 0, 255)
# astype('uint8') maps np.nan and np.inf to 0
result = result.astype('uint8')
result = Image.fromarray(result, 'RGBA')
return result
def alpha_composite_with_color(image, color=(255, 255, 255)):
"""Alpha composite an RGBA image with a single color image of the
specified color and the same size as the original image.
Keyword Arguments:
image -- PIL RGBA Image object
color -- Tuple r, g, b (default 255, 255, 255)
"""
back = Image.new('RGBA', size=image.size, color=color + (255,))
return alpha_composite(image, back)
def pure_pil_alpha_to_color_v1(image, color=(255, 255, 255)):
"""Alpha composite an RGBA Image with a specified color.
NOTE: This version is much slower than the
alpha_composite_with_color solution. Use it only if
numpy is not available.
Source: http://stackoverflow.com/a/9168169/284318
Keyword Arguments:
image -- PIL RGBA Image object
color -- Tuple r, g, b (default 255, 255, 255)
"""
def blend_value(back, front, a):
return (front * a + back * (255 - a)) / 255
def blend_rgba(back, front):
result = [blend_value(back[i], front[i], front[3]) for i in (0, 1, 2)]
return tuple(result + [255])
im = image.copy() # don't edit the reference directly
p = im.load() # load pixel array
for y in range(im.size[1]):
for x in range(im.size[0]):
p[x, y] = blend_rgba(color + (255,), p[x, y])
return im
def pure_pil_alpha_to_color_v2(image, color=(255, 255, 255)):
"""Alpha composite an RGBA Image with a specified color.
Simpler, faster version than the solutions above.
Source: http://stackoverflow.com/a/9459208/284318
Keyword Arguments:
image -- PIL RGBA Image object
color -- Tuple r, g, b (default 255, 255, 255)
"""
image.load() # needed for split()
background = Image.new('RGB', image.size, color)
background.paste(image, mask=image.split()[3]) # 3 is the alpha channel
return background
简单的非合成alpha_to_color
函数是最快的解决方案,但留下了丑陋的边框,因为它不处理半透明区域。
纯PIL和numpy合成解决方案都给出了很好的结果,但alpha_composite_with_color
比pure_pil_alpha_to_color
(79.6毫秒)快得多(8.93毫秒)。 如果您的系统上有numpy,那就是最佳选择。(更新:新的纯PIL版本是所有上述解决方案中最快的版本。)
$ python -m timeit "import Image; from apps.front import utils; i = Image.open(u'logo.png'); i2 = utils.alpha_to_color(i)"
10 loops, best of 3: 4.67 msec per loop
$ python -m timeit "import Image; from apps.front import utils; i = Image.open(u'logo.png'); i2 = utils.alpha_composite_with_color(i)"
10 loops, best of 3: 8.93 msec per loop
$ python -m timeit "import Image; from apps.front import utils; i = Image.open(u'logo.png'); i2 = utils.pure_pil_alpha_to_color(i)"
10 loops, best of 3: 79.6 msec per loop
$ python -m timeit "import Image; from apps.front import utils; i = Image.open(u'logo.png'); i2 = utils.pure_pil_alpha_to_color_v2(i)"
10 loops, best of 3: 1.1 msec per loop
答案 0 :(得分:99)
这是一个更简单的版本 - 不确定它的性能如何。基于我在为sorl缩略图构建RGBA -> JPG + BG
支持时发现的一些django片段,我发现了很多。
from PIL import Image
png = Image.open(object.logo.path)
png.load() # required for png.split()
background = Image.new("RGB", png.size, (255, 255, 255))
background.paste(png, mask=png.split()[3]) # 3 is the alpha channel
background.save('foo.jpg', 'JPEG', quality=80)
结果@ 80%
结果@ 50%
答案 1 :(得分:24)
通过使用Image.alpha_composite
,Yuji'Tomita'Tomita的解决方案变得更加简单。如果png没有alpha通道,此代码可以避免tuple index out of range
错误。
from PIL import Image
png = Image.open(img_path).convert('RGBA')
background = Image.new('RGBA', png.size, (255,255,255))
alpha_composite = Image.alpha_composite(background, png)
alpha_composite.save('foo.jpg', 'JPEG', quality=80)
答案 2 :(得分:13)
透明部分大多具有RGBA值(0,0,0,0)。由于JPG没有透明度,因此jpeg值设置为(0,0,0),为黑色。
在圆形图标周围,有一些非零RGB值的像素,其中A = 0.因此它们在PNG中看起来是透明的,但在JPG中看起来很有趣。
您可以使用numpy设置A == 0的所有像素,使R = G = B = 255:
import Image
import numpy as np
FNAME = 'logo.png'
img = Image.open(FNAME).convert('RGBA')
x = np.array(img)
r, g, b, a = np.rollaxis(x, axis = -1)
r[a == 0] = 255
g[a == 0] = 255
b[a == 0] = 255
x = np.dstack([r, g, b, a])
img = Image.fromarray(x, 'RGBA')
img.save('/tmp/out.jpg')
请注意,徽标还有一些半透明像素,用于平滑文字和图标周围的边缘。保存为jpeg会忽略半透明度,使得jpeg看起来很混乱。
使用imagemagick的convert
命令可以获得更好的质量结果:
convert logo.png -background white -flatten /tmp/out.jpg
要使用numpy制作更好的混合质量,可以使用alpha compositing:
import Image
import numpy as np
def alpha_composite(src, dst):
'''
Return the alpha composite of src and dst.
Parameters:
src -- PIL RGBA Image object
dst -- PIL RGBA Image object
The algorithm comes from http://en.wikipedia.org/wiki/Alpha_compositing
'''
# http://stackoverflow.com/a/3375291/190597
# http://stackoverflow.com/a/9166671/190597
src = np.asarray(src)
dst = np.asarray(dst)
out = np.empty(src.shape, dtype = 'float')
alpha = np.index_exp[:, :, 3:]
rgb = np.index_exp[:, :, :3]
src_a = src[alpha]/255.0
dst_a = dst[alpha]/255.0
out[alpha] = src_a+dst_a*(1-src_a)
old_setting = np.seterr(invalid = 'ignore')
out[rgb] = (src[rgb]*src_a + dst[rgb]*dst_a*(1-src_a))/out[alpha]
np.seterr(**old_setting)
out[alpha] *= 255
np.clip(out,0,255)
# astype('uint8') maps np.nan (and np.inf) to 0
out = out.astype('uint8')
out = Image.fromarray(out, 'RGBA')
return out
FNAME = 'logo.png'
img = Image.open(FNAME).convert('RGBA')
white = Image.new('RGBA', size = img.size, color = (255, 255, 255, 255))
img = alpha_composite(img, white)
img.save('/tmp/out.jpg')
答案 3 :(得分:4)
这是纯PIL的解决方案。
def blend_value(under, over, a):
return (over*a + under*(255-a)) / 255
def blend_rgba(under, over):
return tuple([blend_value(under[i], over[i], over[3]) for i in (0,1,2)] + [255])
white = (255, 255, 255, 255)
im = Image.open(object.logo.path)
p = im.load()
for y in range(im.size[1]):
for x in range(im.size[0]):
p[x,y] = blend_rgba(white, p[x,y])
im.save('/tmp/output.png')
答案 4 :(得分:1)
它没有被打破。它正是你所说的那样;那些像素是黑色的,完全透明。您将需要迭代所有像素并将具有完全透明度的像素转换为白色。
答案 5 :(得分:0)
import numpy as np
import PIL
def convert_image(image_file):
image = Image.open(image_file) # this could be a 4D array PNG (RGBA)
original_width, original_height = image.size
np_image = np.array(image)
new_image = np.zeros((np_image.shape[0], np_image.shape[1], 3))
# create 3D array
for each_channel in range(3):
new_image[:,:,each_channel] = np_image[:,:,each_channel]
# only copy first 3 channels.
# flushing
np_image = []
return new_image
答案 6 :(得分:-1)
导入图片
def fig2img(图): “”” @brief将Matplotlib图形转换为RGBA格式的PIL图像并将其返回 @param fig a matplotlib figure @return一个Python Imaging Library(PIL)图像 “”” #将图像像素图放入一个numpy数组中 buf = fig2data(图) w,h,d = buf.shape 返回Image.frombytes(“RGBA”,(w,h),buf.tostring())
def fig2data(图): “”” @brief将Matplotlib图形转换为带有RGBA通道的4D numpy数组并返回它 @param fig a matplotlib figure @return一个RGBA值的numpy 3D数组 “”” #绘制渲染器 fig.canvas.draw()
# Get the RGBA buffer from the figure
w,h = fig.canvas.get_width_height()
buf = np.fromstring ( fig.canvas.tostring_argb(), dtype=np.uint8 )
buf.shape = ( w, h, 4 )
# canvas.tostring_argb give pixmap in ARGB mode. Roll the ALPHA channel to have it in RGBA mode
buf = np.roll ( buf, 3, axis = 2 )
return buf
def rgba2rgb(img,c =(0,0,0),path ='foo.jpg',is_already_saved = False,if_load = True): 如果不是is_already_saved: background = Image.new(“RGB”,img.size,c) background.paste(img,mask = img.split()[3])#3是alpha通道
background.save(path, 'JPEG', quality=100)
is_already_saved = True
if if_load:
if is_already_saved:
im = Image.open(path)
return np.array(im)
else:
raise ValueError('No image to load.')