我想通过占用阵列的大部分方块并将这些块写入另一个阵列来减小2D阵列的大小。方块的大小是可变的,假设在一侧有n个值。数组的数据类型将是整数。我目前正在使用python中的循环将每个块分配给一个临时数组,然后从tmpArray中提取唯一值。然后我循环遍历这些并找到发生率最高的那个。您可以想象,随着输入数组大小的增加,此过程会变得太慢。
我已经看到了从我的方块中获取最小值,最大值和平均值的示例,但我不知道如何将它们转换为多数。 Grouping 2D numpy array in average 和 resize with averaging or rebin a numpy 2d array
我正在寻找一些方法来加速这个过程,通过使用numpy在整个阵列上执行此过程。 (切换到数组的平铺部分,因为输入太大而无法容纳在内存中,我可以处理这个方面)
由于
#snippet of my code
#pull a tmpArray representing one square chunk of my input array
kernel = sourceDs.GetRasterBand(1).ReadAsArray(int(sourceRow),
int(sourceCol),
int(numSourcePerTarget),
int(numSourcePerTarget))
#get a list of the unique values
uniques = np.unique(kernel)
curMajority = -3.40282346639e+038
for val in uniques:
numOccurances = (array(kernel)==val).sum()
if numOccurances > curMajority:
ans = val
curMajority = numOccurances
#write out our answer
outBand.WriteArray(curMajority, row, col)
#This is insanity!!!
根据Bago的优秀建议,我认为我正在寻求解决方案。 这是我到目前为止所拥有的。我做的一个改变是使用原始网格形状的(x y,n n)数组。我遇到的问题是我似乎无法弄清楚如何将where,count和uniq_a步骤从一维转换为二维。
#test data
grid = np.array([[ 37, 1, 4, 4, 6, 6, 7, 7],
[ 1, 37, 4, 5, 6, 7, 7, 8],
[ 9, 9, 11, 11, 13, 13, 15, 15],
[9, 10, 11, 12, 13, 14, 15, 16],
[ 17, 17, 19, 19, 21, 11, 23, 23],
[ 17, 18, 19, 20, 11, 22, 23, 24],
[ 25, 25, 27, 27, 29, 29, 31, 32],
[25, 26, 27, 28, 29, 30, 31, 32]])
print grid
n = 4
X, Y = grid.shape
x = X // n
y = Y // n
grid = grid.reshape( (x, n, y, n) )
grid = grid.transpose( [0, 2, 1, 3] )
grid = grid.reshape( (x*y, n*n) )
grid = np.sort(grid)
diff = np.empty((grid.shape[0], grid.shape[1]+1), bool)
diff[:, 0] = True
diff[:, -1] = True
diff[:, 1:-1] = grid[:, 1:] != grid[:, :-1]
where = np.where(diff)
#This is where if falls apart for me as
#where returns two arrays:
# row indices [0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3]
# col indices [ 0 2 5 6 9 10 13 14 16 0 3 7 8 11 12 15 16 0 3 4 7 8 11 12 15
# 16 0 2 3 4 7 8 11 12 14 16]
#I'm not sure how to get a
counts = where[:, 1:] - where[:, -1]
argmax = counts[:].argmax()
uniq_a = grid[diff[1:]]
print uniq_a[argmax]
答案 0 :(得分:3)
这是一个能够更快地找到多数的函数,它基于numpy.unique的实现。
def get_majority(a):
a = a.ravel()
a = np.sort(a)
diff = np.empty(len(a)+1, 'bool')
diff[0] = True
diff[-1] = True
diff[1:-1] = a[1:] != a[:-1]
where = np.where(diff)[0]
counts = where[1:] - where[:-1]
argmax = counts.argmax()
uniq_a = a[diff[1:]]
return uniq_a[argmax]
如果有帮助,请告诉我。
更新
您可以执行以下操作以使您的数组成为(n*n, x, y)
,这应该会让您在第一个轴上操作并以矢量化方式完成此操作。
X, Y = a.shape
x = X // n
y = Y // n
a = a.reshape( (x, n, y, n) )
a = a.transpose( [1, 3, 0, 2] )
a = a.reshape( (n*n, x, y) )
要记住一些事情。即使重塑和转置返回视图,我相信reshape-transpose-reshape将被强制复制。也可以概括上述方法在轴上操作,但可能需要一些创造力。
答案 1 :(得分:1)
这可能是一个警察,但我最终采用scipy.stats.stats模式函数来找到多数值。我不确定这与处理时间方面的其他解决方案相比如何。
import scipy.stats.stats as stats
#test data
grid = np.array([[ 37, 1, 4, 4, 6, 6, 7, 7],
[ 1, 37, 4, 5, 6, 7, 7, 8],
[ 9, 9, 11, 11, 13, 13, 15, 15],
[9, 10, 11, 12, 13, 14, 15, 16],
[ 17, 17, 19, 19, 21, 11, 23, 23],
[ 17, 18, 19, 20, 11, 22, 23, 24],
[ 25, 25, 27, 27, 29, 29, 31, 32],
[25, 26, 27, 28, 29, 30, 31, 32]])
print grid
n = 2
X, Y = grid.shape
x = X // n
y = Y // n
grid = grid.reshape( (x, n, y, n) )
grid = grid.transpose( [0, 2, 1, 3] )
grid = grid.reshape( (x*y, n*n) )
answer = np.array(stats.mode(grid, 1)[0]).reshape(x, y)