寻找重新排列列表的算法

时间:2012-01-29 14:20:20

标签: algorithm list common-lisp

我一直试图找出一种能够执行以下操作的算法:

该算法将被递归如下列表:

((start a b c) (d e f (start g h i) (j k l) (end)) (end) (m n o))

然后它将包含元素 start 的列表与包含元素 end 的列表之前的所有列表连接起来。返回的列表应如下所示:

((start a b c (d e f (start g h i (j k l)))) (m n o))

该算法必须能够处理包含 start 的其他列表中包含 start 的列表。

编辑:

我现在拥有的是:

(defun conc-lists (l)
  (cond
      ((endp l) '())
      ((eq (first (first l)) 'start) 
          (cons (cons (first (first l)) (conc-lists (rest (first l))))) 
              (conc-lists (rest l)))
      ((eq (first (first l)) 'end) '())
      (t (cons (first l) (conc-lists (rest l))))))

但它不起作用。也许我应该列出或追加而不是消费?

编辑2:

上面的程序不起作用,因为我试图从非列表中获取第一个元素。这是我到目前为止所提出的:

(defun conc-lists (l)
  (cond
      ((endp l) '())
      ((eq (first (first l)) 'start) 
          (append (cons (first (first l)) (rest (first l))) 
              (conc-lists (rest l))))
      ((eq (first (first l)) 'end) '())
      (t (cons (first l) (conc-lists (rest l))))))

这是我得到的结果:

(conc-lists ((START A B C) (D E F (START G H I) (J K L) (END)) (END) (M N O)))
1. Trace: (CONC-LISTS '((START A B C) (D E F (START G H I) (J K L) (END)) (END) (M N O)))
2. Trace: (CONC-LISTS '((D E F (START G H I) (J K L) (END)) (END) (M N O)))
3. Trace: (CONC-LISTS '((END) (M N O)))
3. Trace: CONC-LISTS ==> NIL
2. Trace: CONC-LISTS ==> ((D E F (START G H I) (J K L) (END)))
1. Trace: CONC-LISTS ==> (START A B C (D E F (START G H I) (J K L) (END)))
(START A B C (D E F (START G H I) (J K L) (END)))

1 个答案:

答案 0 :(得分:1)

我也是CL的初学者,但这看起来像是一个有趣的挑战,所以我对它有所了解。有经验的lispers,请注意此代码! @ user1176517,如果您发现任何错误,请告诉我们!

首先评论一下:我想把它做成O(n),而不是O(n ^ 2),所以我做了递归函数返回两者头部和尾部(即最后的缺点)通过递归处理树的分支产生的列表。这样,在conc-lists-start中,我可以nconc将一个列表的最后一个缺点放在另一个列表的第一个缺点上,而nconc不必在列表中向下走。我使用了多个返回值来执行此操作,不幸的是,这会使代码膨胀一些。为了确保tail是结果列表的 last 缺点,我需要在重复之前检查cdr是否为null

两个递归函数处理树:conc-listsconc-lists-first。当conc-lists看到(start)时,递归处理将继续conc-lists-start。同样,当conc-lists-start看到(end)时,递归处理会继续conc-lists

我确信它可以使用更多评论......我可能会在以后添加更多评论。

这是工作代码:

;;; conc-lists
;;; runs recursively over a tree, looking for lists which begin with 'start
;;; such lists will be nconc'd with following lists a same level of nesting,
;;;   up until the first list which begins with 'end
;;; lists which are nconc'd onto the (start) list are first recursively processed
;;;   to look for more (start)s
;;; returns 2 values: head *and* tail of resulting list
;;; DESTRUCTIVELY MODIFIES ARGUMENT!
(defun conc-lists (lst)
  (cond
    ((or  (null lst) (atom lst)) (values lst lst))
    ((null (cdr lst))            (let ((head (conc-process-rest lst)))
                                   (values head head)))
    (t (conc-process-rest lst))))

;;; helper to factor out repeated code
(defun conc-process-rest (lst)
  (if (is-start (car lst))
      (conc-lists-start (cdar lst) (cdr lst))
      (multiple-value-bind (head tail) (conc-lists (cdr lst))
         (values (cons (conc-lists (car lst)) head) tail))))

;;; conc-lists-start
;;; we have already seen a (start), and are nconc'ing lists together
;;; takes *2* arguments so that 'start can easily be stripped from the
;;;   arguments to the initial call to conc-lists-start
;;; recursive calls don't need to strip anything off, so the car and cdr
;;;   are just passed directly
(defun conc-lists-start (first rest)
  (multiple-value-bind (head tail) (conc-lists first)
    (cond
      ((null rest) (let ((c (list head))) (values c c)))
      ((is-end (car rest))
         (multiple-value-bind (head2 tail2) (conc-lists (cdr rest))
           (values (cons head head2) tail2)))
      (t (multiple-value-bind (head2 tail2) (conc-lists-start (car rest) (cdr rest))
           (nconc tail (car head2))
           (values (cons head (cdr head2)) tail2))))))

(defun is-start (first)
  (and (listp first) (eq 'start (car first))))
(defun is-end   (first)
  (and (listp first) (eq 'end (car first))))