OpenCL AMD与NVIDIA的表现

时间:2012-01-23 11:32:48

标签: opencl gpgpu nvidia

我实现了一个简单的内核,它是某种卷积。我在NVIDIA GT 240上进行了测量。在CUDA上写入时需要70 ms,在OpenCL上写入时需要100 ms。好吧,我想,NVIDIA编译器更适合CUDA(或者我做错了)。 我需要在AMD GPU上运行它,所以我迁移到了AMD APP SDK。完全相同的内核代码。

我做了两次测试,他们的结果对我来说令人沮丧:HD 6670为200 ms,HD 5850为70 ms(与GT 240 + CUDA同时)。而且我对这种奇怪行为的原因很感兴趣。

所有项目都是使用NVIDIA和AMD的示例项目中的设置在VS2010上构建的。

请不要将我的帖子视为NVIDIA广告。我很明白HD 5850比GT 240更强大。我唯一想知道的是为什么会出现这种差异以及如何解决问题。

更新。下面是内核代码,它在基础代码中查找6个大小相同的模板图像。基本图像的每个像素都被视为其中一个模板的可能来源,并由单独的线程处理。内核比较基本图像和模板1的每个像素的R,G,B值,并且如果至少一个差异超过diff参数,则对应的像素被计为不匹配。如果不匹配像素的数量小于maxNonmatchQt,则会触发相应的模板。

__constant int tOffset = 8196; // one template size in memory (in bytes)
__kernel void matchImage6( __global unsigned char* image, // pointer to the base image
            int imgWidth, // base image width
            int imgHeight, // base image height
            int imgPitch, // base image pitch (in bytes)
            int imgBpp, // base image bytes (!) per pixel
            __constant unsigned char* templates, // pointer to the array of templates
            int tWidth, // templates width (the same for all)
            int tHeight, // templates height (the same for all)
            int tPitch, // templates pitch (in bytes, the same for all)
            int tBpp, // templates bytes (!) per pixel (the same for all)
            int diff, // max allowed difference of intensity
            int maxNonmatchQt, // max number of nonmatched pixels
            __global int* result, // results
                            ) {
int x0 = (int)get_global_id(0);
int y0 = (int)get_global_id(1);
if( x0 + tWidth > imgWidth || y0 + tHeight > imgHeight)
    return;
int nonmatchQt[] = {0, 0, 0, 0, 0, 0};
for( int y = 0; y < tHeight; y++) {
    int ind = y * tPitch;
    int baseImgInd = (y0 + y) * imgPitch + x0 * imgBpp;
    for( int x = 0; x < tWidth; x++) {
        unsigned char c0 = image[baseImgInd];
        unsigned char c1 = image[baseImgInd + 1];
        unsigned char c2 = image[baseImgInd + 2];
        for( int i = 0; i < 6; i++)
            if( abs( c0 - templates[i * tOffset + ind]) > diff || 
                            abs( c1 - templates[i * tOffset + ind + 1]) > diff || 
                            abs( c2 - templates[i * tOffset + ind + 2]) > diff)
                nonmatchQt[i]++;
        ind += tBpp;
        baseImgInd += imgBpp;
    }
    if( nonmatchQt[0] > maxNonmatchQt && nonmatchQt[1] > maxNonmatchQt && nonmatchQt[2] > maxNonmatchQt && nonmatchQt[3] > maxNonmatchQt && nonmatchQt[4] > maxNonmatchQt && nonmatchQt[5] > maxNonmatchQt)
        return;
}
for( int i = 0; i < 6; i++)
    if( nonmatchQt[i] < maxNonmatchQt) {
        unsigned int pos = atom_inc( &result[0]) * 3;
        result[pos + 1] = i;
        result[pos + 2] = x0;
        result[pos + 3] = y0;
    }
}

内核运行配置: 全球工作规模=(1900,1200) AMD的本地工作规模=(32,8),NVIDIA的工作规模为(32,16)。

执行时间: HD 5850 - 69 ms, HD 6670 - 200 ms, GT 240 - 100 ms。

对我的代码的任何评论也非常感谢。

2 个答案:

答案 0 :(得分:4)

执行时间的差异是由编译器引起的。 您的代码可以轻松地进行矢量化。将图像和模板视为矢量类型char4的数组(每个char4矢量的前四个坐标始终为0)。而不是3个内存读取:

unsigned char c0 = image[baseImgInd];
unsigned char c1 = image[baseImgInd + 1];
unsigned char c2 = image[baseImgInd + 2];

只使用一个:

unsigned char4 c = image[baseImgInd];

而不是笨重如果:

    if( abs( c0 - templates[i * tOffset + ind]) > diff || 
               abs( c1 - templates[i * tOffset + ind + 1]) > diff || 
               abs( c2 - templates[i * tOffset + ind + 2]) > diff)
         nonmatchQt[i]++;

快速使用:

    unsigned char4 t = templates[i * tOffset + ind];
    nonmatchQt[i] += any(abs_diff(c,t)>diff);

因此,您可以将代码的性能提高3倍(如果编译器本身没有对代码进行矢量化)。我想AMD OpenCL编译器没有这种矢量化和其他优化。根据我的经验,NVIDIA GPU上的OpenCL通常可以比CUDA更快,因为它更低级。

答案 1 :(得分:0)

对此没有确切的完美答案。 OpenCL性能取决于许多参数。访问全局内存的次数,代码的效率等。此外,两个设备之间的比较非常困难,因为它们可能具有不同的本地,全局,恒定的存储器。核心数,频率,内存带宽,更重要的是硬件架构等。

每个硬件都提供了自己的性能提升,例如来自NVIDIA的native_。因此,您需要了解有关您正在使用的硬件的更多信息,这可能确实有效。但我个人推荐的不是使用这种特定于硬件的优化,它可能会影响代码的灵活性。

您还可以找到一些发表的论文,表明CUDA性能远远优于同一NVIDIA硬件上的OpenCL性能。

因此,编写提供良好灵活性的代码总是更好,而不是特定于设备的优化。