我想使用Fortran和LAPACK对一个真正的对称矩阵进行三对角化。 LAPACK基本上提供了两个例程,一个在完整矩阵上运行,另一个在打包存储中的矩阵上运行。虽然后者确实使用较少的内存,但我想知道关于速度差异是否可以说什么呢?
答案 0 :(得分:9)
这当然是一个经验问题:但总的来说,没有什么是免费的,更少的内存/更多的运行时间是一个非常常见的权衡。
在这种情况下,对于打包的情况,数据的索引更复杂,因此当您遍历矩阵时,获取数据的成本会高一些。 (使这张照片复杂化的是对于对称矩阵,lapack例程也假定某种类型的打包 - 你只有矩阵的上部或下部可用)。
我今天早些时候正在弄乱一个特征问题,所以我将把它作为测量基准;尝试使用简单的对称测试用例(Herdon矩阵,来自http://people.sc.fsu.edu/~jburkardt/m_src/test_mat/test_mat.html),并将ssyevd
与sspevd
进行比较
$ ./eigen2 500
Generating a Herdon matrix:
Unpacked array:
Eigenvalues L_infty err = 1.7881393E-06
Packed array:
Eigenvalues L_infty err = 3.0994415E-06
Packed time: 2.800000086426735E-002
Unpacked time: 2.500000037252903E-002
$ ./eigen2 1000
Generating a Herdon matrix:
Unpacked array:
Eigenvalues L_infty err = 4.5299530E-06
Packed array:
Eigenvalues L_infty err = 5.8412552E-06
Packed time: 0.193900004029274
Unpacked time: 0.165000006556511
$ ./eigen2 2500
Generating a Herdon matrix:
Unpacked array:
Eigenvalues L_infty err = 6.1988831E-06
Packed array:
Eigenvalues L_infty err = 8.4638596E-06
Packed time: 3.21040010452271
Unpacked time: 2.70149993896484
大约有18%的差异,我必须承认它比我预期的要大(对于打包的情况,误差也稍大一些?)。这是英特尔的MKL。性能差异将取决于您的矩阵,当然,正如eriktous所指出的,以及您正在做的问题;随机访问你必须做的矩阵越多,开销就越大。我使用的代码如下:
program eigens
implicit none
integer :: nargs,n ! problem size
real, dimension(:,:), allocatable :: A, B, Z
real, dimension(:), allocatable :: PA
real, dimension(:), allocatable :: work
integer, dimension(:), allocatable :: iwork
real, dimension(:), allocatable :: eigenvals, expected
real :: c, p
integer :: worksize, iworksize
character(len=100) :: nstr
integer :: unpackedclock, packedclock
double precision :: unpackedtime, packedtime
integer :: i,j,info
! get filename
nargs = command_argument_count()
if (nargs /= 1) then
print *,'Usage: eigen2 n'
print *,' Where n = size of array'
stop
endif
call get_command_argument(1, nstr)
read(nstr,'(I)') n
if (n < 4 .or. n > 25000) then
print *, 'Invalid n ', nstr
stop
endif
! Initialize local arrays
allocate(A(n,n),B(n,n))
allocate(eigenvals(n))
! calculate the matrix - unpacked
print *, 'Generating a Herdon matrix: '
A = 0.
c = (1.*n * (1.*n + 1.) * (2.*n - 5.))/6.
forall (i=1:n-1,j=1:n-1)
A(i,j) = -1.*i*j/c
endforall
forall (i=1:n-1)
A(i,i) = (c - 1.*i*i)/c
A(i,n) = 1.*i/c
endforall
forall (j=1:n-1)
A(n,j) = 1.*j/c
endforall
A(n,n) = -1./c
B = A
! expected eigenvalues
allocate(expected(n))
p = 3. + sqrt((4. * n - 3.) * (n - 1.)*3./(n+1.))
expected(1) = p/(n*(5.-2.*n))
expected(2) = 6./(p*(n+1.))
expected(3:n) = 1.
print *, 'Unpacked array:'
allocate(work(1),iwork(1))
call ssyevd('N','U',n,A,n,eigenvals,work,-1,iwork,-1,info)
worksize = int(work(1))
iworksize = int(work(1))
deallocate(work,iwork)
allocate(work(worksize),iwork(iworksize))
call tick(unpackedclock)
call ssyevd('N','U',n,A,n,eigenvals,work,worksize,iwork,iworksize,info)
unpackedtime = tock(unpackedclock)
deallocate(work,iwork)
if (info /= 0) then
print *, 'Error -- info = ', info
endif
print *,'Eigenvalues L_infty err = ', maxval(eigenvals-expected)
! pack array
print *, 'Packed array:'
allocate(PA(n*(n+1)/2))
allocate(Z(n,n))
do i=1,n
do j=i,n
PA(i+(j-1)*j/2) = B(i,j)
enddo
enddo
allocate(work(1),iwork(1))
call sspevd('N','U',n,PA,eigenvals,Z,n,work,-1,iwork,-1,info)
worksize = int(work(1))
iworksize = iwork(1)
deallocate(work,iwork)
allocate(work(worksize),iwork(iworksize))
call tick(packedclock)
call sspevd('N','U',n,PA,eigenvals,Z,n,work,worksize,iwork,iworksize,info)
packedtime = tock(packedclock)
deallocate(work,iwork)
deallocate(Z,A,B,PA)
if (info /= 0) then
print *, 'Error -- info = ', info
endif
print *,'Eigenvalues L_infty err = ', &
maxval(eigenvals-expected)
deallocate(eigenvals, expected)
print *,'Packed time: ', packedtime
print *,'Unpacked time: ', unpackedtime
contains
subroutine tick(t)
integer, intent(OUT) :: t
call system_clock(t)
end subroutine tick
! returns time in seconds from now to time described by t
real function tock(t)
integer, intent(in) :: t
integer :: now, clock_rate
call system_clock(now,clock_rate)
tock = real(now - t)/real(clock_rate)
end function tock
end program eigens