我正在寻找从表格XY数据到高斯函数(a.k.a.钟形曲线)进行曲线拟合的算法。通过谷歌搜索,我可以找到几个用于Matlab的高斯拟合算法,这里有几个:
https://ccrma.stanford.edu/~jos/sasp/Fitting_Gaussian_Data.html
http://jila.colorado.edu/bec/BEC_for_everyone/matlabfitting.htm
似乎使用Matlab的'polyfit'功能来完成工作。
任何人都可以看到很容易为Lua语言(高斯或者polyfit)制作算法?如果没有,我会非常感谢你帮助创建/移植这样的算法,因为它可能会耗费一天的Lua技能。
答案 0 :(得分:2)
这是我尝试从噪声测量数据中提取高斯拟合。
require 'gsl'
require 'math'
--x=x coordinates, y=y coordinates
--clip=relative clip/ignore level 0..1 (i.e 0.1 removes values below 10% of max amplitide)
--removeoffset=set to true if y data offset should be removed
function gaussianFit( x, y, clip, removeoffset )
local xx = {}
local yy = {}
local yoffset=0
if removeoffset==nil or removeoffset==false then
else --remove y data offset
yoffset=gsl.Vector(y):min()
end
local ymax=gsl.Vector(y):max()-yoffset
--pick only data points that has y coord larger than clip level
for i=1,#x do
if (y[i]-yoffset) > (clip*ymax) then
table.insert(xx, x[i])
table.insert(yy, math.log(y[i]-yoffset))
end
end
local xvect = gsl.Vector(xx)
local yvect = gsl.Vector(yy)
--fit to polynomial
local poly3 = gsl.fit.poly(3) -- a third degree polynomial
local fit = gsl.lsfit({xvect, poly3}, yvect, nil, "fmulti") -- fits xx and yy with poly3
--convert to gauss coeffs
local A2=fit:coeffs()[3]
local A1=fit:coeffs()[2]
local A0=fit:coeffs()[1]
local sigma=math.sqrt(-1/(2*A2))
local mu=A1*math.pow(sigma,2)
local A=math.exp(A0+math.pow(mu,2)/(2*math.pow(sigma,2)))
return sigma, mu, A
end
xx={1, 2, 3, 4, 5, 6, 7, 8, 9}
yy={1, 2, 4, 6, 4, 3, 2, 1, 1}
sigma,mu,A=gaussianFit(xx,yy,0.1,false)
print(sigma.." "..mu.." ".. A)
--prints 2.2829275461334 4.6387484511153 4.201115115886
答案 1 :(得分:1)
您可以将方程式重新排列为线性形式,然后使用Paul Bourke在Linear Regression中描述的方法(稍微向下)。
如果您需要,我可以为您演示重新安排过程。
如果确实需要,我可以在Lua中提供最佳拟合算法的实现。