时间序列面板数据的一般滞后

时间:2012-01-18 12:42:48

标签: r time-series lag

我有一个类似于此

的数据集
User    Date        Value
A       2012-01-01  4
A       2012-01-02  5   
A       2012-01-03  6
A       2012-01-04  7
B       2012-01-01  2
B       2012-01-02  3   
B       2012-01-03  4
B       2012-01-04  5

我希望创建一个Value的延迟,尊重User

User    Date        Value   Value.lag
A       2012-01-01  4       NA
A       2012-01-02  5       4
A       2012-01-03  6       5
A       2012-01-04  7       6
B       2012-01-01  2       NA
B       2012-01-02  3       2   
B       2012-01-03  4       3
B       2012-01-04  5       4

我在循环中做得非常低效

df$value.lag1<-NA
levs<-levels(as.factor(df$User))
levs
  for (i in 1:length(levs)) {
    temper<- subset(df,User==as.numeric(levs[i]))
    temper<- rbind(NA,temper[-nrow(temper),])  
df$value.lag1[df$User==as.numeric(as.character(levs[i]))]<- temper
      }

但这很慢。我查看了使用bytapply,但没有弄清楚如何使它们正常工作。

我认为XTS或TS不会因为User元素而起作用。

有什么建议吗?

8 个答案:

答案 0 :(得分:9)

您可以使用ddply:它将data.frame剪切成碎片并转换每个部分。

d <- data.frame( 
  User = rep( LETTERS[1:3], each=10 ),
  Date = seq.Date( Sys.Date(), length=30, by="day" ),
  Value = rep(1:10, 3)
)
library(plyr)
d <- ddply( 
  d, .(User), transform,
  # This assumes that the data is sorted
  Value = c( NA, Value[-length(Value)] ) 
)

答案 1 :(得分:4)

我认为最简单的方法,特别是考虑进行进一步分析,是将数据框转换为pdata.frame类的plm类。

diff()lag()转换后,运算符可用于创建面板滞后和差异。

df<-pdata.frame(df,index=c("id","date")
df<-transofrm(df, l_value=lag(value,1))

答案 2 :(得分:2)

我偶然发现了一个类似的问题,并编写了一个函数。

#df needs to be a structured balanced paneldata set sorted by id and date
#OBS the function deletes the row where the NA value would have been.

df <- data.frame(id = c(1, 1, 1, 1, 1, 2, 2,2,2,2), 
                 date = c(1992, 1993, 1991, 1990, 1994, 1992, 1991
                          ,1994,1990,1993), 
                 value = c(4.1, 4.5, 3.3, 5.3, 3.0, 3.2, 5.2,5.3,3.4,5.6))
# sort paneldata set
library(dplyr)
df<-arrange(df,id,date)

#Function
# a=df
# b=colname of variable/variables that you want to lag
# q=number of lag years
# t=colname of date/time column
retraso<-function(a,b,q,t){

  sto<-max(as.numeric(unique(a[[t]])))
  sta<-min(as.numeric(unique(a[[t]])))

  yo<-a[which(a[[t]]>=(sta+q)),]

  la<-function(a,d,t,sto,sta){


    ja<-data.frame(a[[d]],a[[t]])
    colnames(ja)<-c(d,t)


    ja<-ja[which(ja[[t]]<=(sto-q)),1]
    return(ja)
  }

  for (i in 1:length(b)){

    yo[[b[i]]] <-la(a,b[i],t,sto,sta)

    }
    return(yo)

  }

#lag df 1 year
df<-retraso(df,"value",1,"date")

答案 3 :(得分:1)

如果您没有时间变量的空白,请执行

df %>% group_by(User) %>% mutate(value_lag = lag(value, order_by =Date)

如果时间变量确实存在间隙,请参阅此答案 https://stackoverflow.com/a/26108191/3662288

答案 4 :(得分:1)

对于没有丢失障碍的面板,这是一个直观的解决方案:

df <- data.frame(id = c(1, 1, 1, 1, 1, 2, 2), 
                 date = c(1992, 1993, 1991, 1990, 1994, 1992, 1991), 
                 value = c(4.1, 4.5, 3.3, 5.3, 3.0, 3.2, 5.2))

df<-df[with(df, order(id,date)), ]  # sort by id and then by date
df$l_value=c(NA,df$value[-length(df$value)]) # create a new var with data displaced by 1 unit
df$l_value[df$id != c(NA, df$id[-length(df$id)])] =NA # NA data with different current and lagged id.
df

id date value l_value
4  1 1990   5.3      NA
3  1 1991   3.3     5.3
1  1 1992   4.1     3.3
2  1 1993   4.5     4.1
5  1 1994   3.0     4.5
7  2 1991   5.2      NA
6  2 1992   3.2     5.2

答案 5 :(得分:0)

同样,您可以使用tapply

# Create Data
user = c(rep('A',4),rep('B',4))
date = rep(seq(as.Date('2012-01-01'),as.Date('2012-01-04'),1),2)
value = c(4:7,2:5) 
df = data.frame(user,date,value)
# Get lagged values
df$value.lag = unlist(tapply(df$value, df$user, function(x) c(NA,x[-length(df$value)])))

这个想法完全相同:取值,按用户拆分,然后在每个子集上运行一个函数。 unlist将其恢复为矢量格式。

答案 6 :(得分:0)

如果表按用户和日期排序,则可以使用zoo完成此操作。诀窍是不要在此时指定索引。

library(zoo)
df <-read.table(text="User Date Value
A 2012-01-01 4
A 2012-01-02 5
A 2012-01-03 6
A 2012-01-04 7
B 2012-01-01 2
B 2012-01-02 3
B 2012-01-03 4
B 2012-01-04 5", header=TRUE, as.is=TRUE,sep = " ")

out <-zoo(df)

Value.lag <-lag(out,-1)[out$User==lag(out$User)]
res <-merge.zoo(out,Value.lag)
res <-res[,-(4:5)]  # to remove extra columns

  User.out Date.out   Value.out Value.Value.lag
1 A        2012-01-01 4         <NA>           
2 A        2012-01-02 5         4              
3 A        2012-01-03 6         5              
4 A        2012-01-04 7         6              
5 B        2012-01-01 2         <NA>           
6 B        2012-01-02 3         2              
7 B        2012-01-03 4         3              
8 B        2012-01-04 5         4 

答案 7 :(得分:0)

现在在CRAN上可用的 collapse 软件包提供了最通用的基于C / C ++的解决方案,以(完全识别)面板滞后,引线,差异和增长率/对数差异。它具有通用功能flagfdifffgrowth,以及相关的滞后/超前,差值和增长算子LFDG。因此,要滞后面板数据集,只需键入:

L(data, n = 1, by = ~ idvar, t = ~ timevar, cols = 4:8)

表示:计算data的第4列到第8列的1个滞后,分别由idvartimevar标识。可以提供多个ID和时间变量,即~ id1 + id2,也可以在每一列上计算滞后和超前的顺序(即n = -1:3计算一个领先和三个滞后)。使用flag也可以通过编程方式完成同一件事:

flag(data[4:8], 1, data$idvar, data$timevar)

在典型的数据集(<30,000 obs。)上,这两个选项的计算结果均低于1毫秒。大数据性能类似于data.tables移动。类似的编程适用于差异fdiff / D和增长率fgrowth / G。这些函数都是S3通用的,并具有矢量/时间序列,矩阵/ ts矩阵,data.frame以及plm::pseriesplm::pdata.framegrouped_df方法。因此,它们可以与plm类一起用于面板数据和dplyr。