我正在尝试在Matlab中实现自己的细化算法来理解细化算法。我正在关注http://fourier.eng.hmc.edu/e161/lectures/morphology/node2.html并实现我自己的代码,但结果不正确。
这是我的代码:
%for the sake of simplicity, the outermost pixels are ignored.
for x = 2:1:511
for y = 2:1:511
% if this pixel is not black, then, proceed in.
if (frame2(y,x) > 0)
% the pos(1 to 8) here are for the surrounding pixels.
pos(1) = frame2(y-1,x-1);
pos(2) = frame2(y, x-1);
pos(3) = frame2(y+1, x+1);
pos(4) = frame2(y+1, x);
pos(5) = frame2(y+1, x-1);
pos(6) = frame2(y, x-1);
pos(7) = frame2(y-1, x-1);
pos(8) = frame2(y-1, x);
nonZeroNeighbor = 0;
transitSequence = 0;
change = 0;
for n = 1:1:8
% for N(P1)
if (pos(n) >= 1)
nonZeroNeighbor = nonZeroNeighbor + 1;
end
% for S(P1)
if (n > 1)
if (pos(n) ~= change)
change = pos(n);
transitSequence = transitSequence + 1;
end
else
change = pos(n);
end
end
% also for S(P1)
if ((nonZeroNeighbor > 1 && nonZeroNeighbor < 7) || transitSequence >= 2)
markMatrix(y,x) = 1;
fprintf(1, '(%d,%d) nonzero: %d transit: %d\n', y,x, nonZeroNeighbor, transitSequence);
else %this else here is for the reverse.
end
end
end
end
for x = 2:1:511
for y = 2:1:511
if (markMatrix(y,x) > 0)
frame2(y,x) = 0;
end
end
end
savePath = [path header number2 '.bmp'];
imwrite(frame2, savePath, 'bmp'); %output image here, replacing the original
从上面的站点,它将函数S(P1)声明为:
“S(P1):序列中的0到1(或1到0)个转换次数(P2,P3,...,P9)”
对于这部分,我的代码低于“%(S)(P1)”和“%(S)(P1)”注释。 我是否正确实现了此功能?我得到的输出图像只是空白。什么都没有。
对于正确的输出,我知道存在逻辑问题。关于该网站,它声明:
当形状的一部分只有2像素宽时,所有像素都是边界点,将被标记然后删除。
此问题暂时无视。
答案 0 :(得分:3)
我已经解决了这个问题,并认为我设法让算法运行起来。我一路上做了几个小编辑(请参阅下面的代码了解详细信息),但也发现了初始实现的两个基本问题。
首先,您假设所有操作都在第1步和第2步的第一步中完成,但实际上您需要让算法在图像上工作一段时间。这是迭代形态学步骤“吃掉”图像的典型特征。这是添加while循环的原因。
其次,你计算S()的方法是错误的;它计算了从0到1和1到0的两个步骤,当它不应该计数两次时它并没有处理P(2)和P(9)周围的对称性。
我的代码:
%Preliminary setups
close all; clear all;
set(0,'DefaultFigureWindowStyle','Docked')
%Read image
frame2 = imread('q1.jpg');
%Code for spesific images
%frame2(:,200:end) = [];
%frame2 = rgb2gray(frame2);
%Make binary
frame2(frame2 < 128) = 1;
frame2(frame2 >= 128) = 0;
%Get sizes and set up mark
[Yn Xn] = size(frame2);
markMatrix = zeros(Yn,Xn);
%First visualization
figure();imagesc(frame2);colormap(gray)
%%
%While loop control
cc = 0;
changed = 1;
while changed && cc < 50;
changed = 0;
cc = cc + 1;
markMatrix = zeros(Yn,Xn);
for x = 2:1:Xn-1
for y = 2:1:Yn-1
% if this pixel is not black, then, proceed in.
if (frame2(y,x) > 0)
% the pos(2 to 9) here are for the surrounding pixels.
pos(1) = frame2(y, x);
pos(2) = frame2(y-1, x);
pos(3) = frame2(y-1, x+1);
pos(4) = frame2(y, x+1);
pos(5) = frame2(y+1, x+1);
pos(6) = frame2(y+1, x);
pos(7) = frame2(y+1, x-1);
pos(8) = frame2(y, x-1);
pos(9) = frame2(y-1, x-1);
nonZeroNeighbor = 0;
transitSequence = 0;
change = pos(9);
for n = 2:1:9
%N()
nonZeroNeighbor = sum(pos(2:end));
%S()
if (double(pos(n)) - double(change)) < 0
transitSequence = transitSequence + 1;
end
change = pos(n);
end
%Test if pixel is to be removed
if ~( nonZeroNeighbor == 0 || nonZeroNeighbor == 1 ...
||nonZeroNeighbor == 7 || nonZeroNeighbor == 8 ...
||transitSequence >= 2)
markMatrix(y,x) = 1;
fprintf(1, '(%d,%d) nonzero: %d transit: %d\n', ...
y,x, nonZeroNeighbor, transitSequence);
end
end
end
end
%Mask out all pixels found to be deleted
frame2(markMatrix > 0) = 0;
%Check if anything has changed
if sum(markMatrix(:)) > 0;changed = 1;end
end
%Final visualization
figure();imagesc(frame2);colormap(gray)