我有一个稀疏向量列表(在R中)。我需要将此列表转换为稀疏矩阵。 通过for循环执行它需要很长时间。
sm<-spMatrix(length(tc2),n.col)
for(i in 1:length(tc2)){
sm[i,]<-(tc2[i])[[1]];
}
有更好的方法吗?
答案 0 :(得分:6)
这是一个两步解决方案:
使用lapply()
和as(..., "sparseMatrix")
将 sparseVectors 列表转换为一列 sparseMatrices 的列表。
使用do.call()
和cBind()
将 sparseMatrices 合并到一个 sparseMatrix 中。
require(Matrix)
# Create a list of sparseVectors
ss <- as(c(0,0,3, 3.2, 0,0,0,-3), "sparseVector")
l <- replicate(3, ss)
# Combine the sparseVectors into a single sparseMatrix
l <- lapply(l, as, "sparseMatrix")
do.call(cBind, l)
# 8 x 3 sparse Matrix of class "dgCMatrix"
#
# [1,] . . .
# [2,] . . .
# [3,] 3.0 3.0 3.0
# [4,] 3.2 3.2 3.2
# [5,] . . .
# [6,] . . .
# [7,] . . .
# [8,] -3.0 -3.0 -3.0
答案 1 :(得分:3)
此方案cbind
一组向量,完全可以将信息转储到sparse, column-oriented矩阵(dgCMatrix
类)中。
这是一个可以做到的功能:
sv.cbind <- function (...) {
input <- lapply( list(...), as, "dsparseVector" )
thelength <- unique(sapply(input,length))
stopifnot( length(thelength)==1 )
return( sparseMatrix(
x=unlist(lapply(input,slot,"x")),
i=unlist(lapply(input,slot,"i")),
p=c(0,cumsum(sapply(input,function(x){length(x@x)}))),
dims=c(thelength,length(input))
) )
}
通过快速测试,这看起来比强制+ cBind
快10倍左右:
require(microbenchmark)
xx <- lapply( 1:10, function (k) {
sparseVector( x=rep(1,100), i=sample.int(1e4,100), length=1e4 )
} )
microbenchmark( do.call( sv.cbind, xx ), do.call( cBind, lapply(xx,as,"sparseMatrix") ) )
# Unit: milliseconds
# expr min lq mean median uq max neval cld
# do.call(sv.cbind, xx) 1.398565 1.464517 1.540172 1.49487 1.55911 3.455421 100 a
# do.call(cBind, lapply(xx, as, "sparseMatrix")) 16.037890 16.356268 16.956326 16.59854 17.49956 20.256253 100 b
答案 2 :(得分:2)
感谢Josh O'Brien建议解决方案:创建3个列表,然后创建sparseMatrix。 我在这里包含了这个代码:
vectorList2Matrix<-function(vectorList){
nzCount<-lapply(vectorList, function(x) length(x@j));
nz<-sum(do.call(rbind,nzCount));
r<-vector(mode="integer",length=nz);
c<-vector(mode="integer",length=nz);
v<-vector(mode="integer",length=nz);
ind<-1;
for(i in 1:length(vectorList)){
ln<-length(vectorList[[i]]@i);
if(ln>0){
r[ind:(ind+ln-1)]<-i;
c[ind:(ind+ln-1)]<-vectorList[[i]]@j+1
v[ind:(ind+ln-1)]<-vectorList[[i]]@x
ind<-ind+ln;
}
}
return (sparseMatrix(i=r,j=c,x=v));
}