我想编写一个函数模板apply
,它接收一些函数f
,一个整数i
和一个参数包。 apply
需要解压缩参数并将f
应用于它们,i
参数pi
除外。对于pi
,它需要在将其作为参数传递给g
之前调用其他函数f
。
似乎我需要一种方法将参数包分区为左侧,i
参数和右侧。这可能吗?在代码中:
template<int i, typename Function, typename... Parms>
void apply(Function f, Parms... parms)
{
auto lhs = // what goes here?
auto pi = // what goes here?
auto rhs = // what goes here?
f(lhs..., g(pi), rhs...);
}
答案 0 :(得分:3)
好的,我们走吧!它真的丑陋但我无法匆忙提出更好的版本;)大多数东西都是沼泽标准模板专业化。最大的问题是创建一个适当大小的整数列表。我似乎记得我提出了一个不错的版本,但不知怎的,我不记得我做了什么。享受!
#include <iostream>
#include <utility>
// printing the values
void print_args() {}
template <typename F> void print_args(F f) { std::cout << f; }
template <typename F, typename... T>
void print_args(F f, T... args)
{
std::cout << f << ", ";
print_args(args...);
}
// the function object to be called:
struct Functor
{
template <typename... T>
void operator()(T... args)
{
std::cout << "f(";
print_args(args...);
std::cout << ")\n";
}
};
// conditionally apply g():
template <typename T> T g(T value) { return 1000 + value; }
template <int i, int j, typename T>
typename std::enable_if<i != j, T>::type forward(T t) { return t; }
template <int i, int j, typename T>
typename std::enable_if<i == j, T>::type forward(T t) { return g(t); }
// create a series of integers:
template <int... Values> struct values {};
template <int Add, typename> struct combine_values;
template <int Add, int... Values>
struct combine_values<Add, values<Values...>>
{
typedef values<Values..., Add> type;
};
template <int Size> struct make_values;
template <> struct make_values<0> { typedef values<> type; };
template <int Size>
struct make_values
{
typedef typename combine_values<Size, typename make_values<Size -1>::type>::type type;
};
// applying f(t...) except for ti where g(ti) is called
template <int i, int... Values, typename Function, typename... T>
void apply_aux(values<Values...>, Function f, T... t)
{
f(forward<i, Values>(t)...);
}
template <int i, typename Function, typename... T>
void apply(Function f, T... t)
{
apply_aux<i>(typename make_values<sizeof...(T)>::type(), f, t...);
}
int main()
{
apply<3>(Functor(), 1, 2, 3, 4, 5, 6, 7, 8);
apply<4>(Functor(), 1, 2, 3, 4, 5, 6, 7, 8);
apply<5>(Functor(), 1, 2, 3, 4, 5, 6, 7, 8);
}
答案 1 :(得分:3)
在不久前,我实际上编写了类似的代码。请尝试以下代码:
template<unsigned N, unsigned M>
struct call_up_impl{
template<class Func, class Mutator, class Tuple, class... Args>
static void do_call(const Func& func, const Mutator& mutator, const Tuple& args, Args&&... unpacked_args) {
call_up_impl<N-1, M>::do_call(func, mutator, args, std::get<N-1>(args), std::forward<Args>(unpacked_args)...);
}
};
template<unsigned M>
struct call_up_impl<0, M> {
template<class Func, class Mutator, class Tuple, class... Args>
static void do_call(const Func& func, const Mutator&, const Tuple&, Args&&... unpacked_args) {
func(std::forward<Args>(unpacked_args)...);
}
};
template<unsigned M>
struct call_up_impl<M, M> {
template<class Func, class Mutator, class Tuple, class... Args>
static void do_call(const Func& func, const Mutator& mutator, const Tuple& args, Args&&... unpacked_args) {
call_up_impl<M-1, M>::do_call(func, mutator, args, mutator(std::get<M-1>(args)), std::forward<Args>(unpacked_args)...);
}
};
template<int i, typename Function, typename... Parms>
void apply(Function f, Parms... parms) {
std::tuple<Parms...> t(parms...);
call_up_impl<std::tuple_size<decltype(t)>::value, i + 1>::do_call(f, &g, t);
}
这是我原始代码的快速修改,所以它没有经过彻底的测试,也许不是最好的方法,但它应该至少起作用(至少根据快速测试,取决于你究竟是什么)想)。应该可以在没有元组的情况下执行此操作,但我没有用g ++编译(它似乎不喜欢所需的嵌套可变参数模板)。但是将apply
更改为:
template<int i, typename Function, typename... Parms>
void apply(Function f, Parms&&... parms) {
std::tuple<Parms&&...> t(std::forward<Parms>(parms)...);
call_up_impl<std::tuple_size<decltype(t)>::value, i + 1>::do_call(f, &g, t);
}
可能会避免元组引入的大部分开销。如果能够正确转发std::get
电话的结果会更好,但我现在太累了,不能写出来。