所以我一直在阅读Haskell中的Zipper模式(以及其他函数语言,我想)来遍历和修改数据结构,我认为这对我来说是一个很好的机会磨练我的技能从而在Haskell中创建类型类 该类可以为我编写代码的公共遍历接口,与遍历的数据结构无关。
我想我可能需要两个类 - 一个用于根数据结构,一个用于创建的特殊数据结构 遍历第一个:
module Zipper where
class Zipper z where
go'up :: z -> Maybe z
go'down :: z -> Maybe z
go'left :: z -> Maybe z
go'right :: z -> Maybe z
class Zippable t where
zipper :: (Zipper z) => t -> z
get :: (Zipper z) => z -> t
put :: (Zipper z) => z -> t -> z
但是当我尝试使用一些简单的数据结构时,例如列表:
-- store a path through a list, with preceding elements stored in reverse
data ListZipper a = ListZipper { preceding :: [a], following :: [a] }
instance Zipper (ListZipper a) where
go'up ListZipper { preceding = [] } = Nothing
go'up ListZipper { preceding = a:ps, following = fs } =
Just $ ListZipper { preceding = ps, following = a:fs }
go'down ListZipper { following = [] } = Nothing
go'down ListZipper { preceding = ps, following = a:fs } =
Just $ ListZipper { preceding = a:ps, following = fs }
go'left _ = Nothing
go'right _ = Nothing
instance Zippable ([a]) where
zipper as = ListZipper { preceding = [], following = as }
get = following
put z as = z { following = as }
或二叉树:
-- binary tree that only stores values at the leaves
data Tree a = Node { left'child :: Tree a, right'child :: Tree a } | Leaf a
-- store a path down a Tree, with branches not taken stored in reverse
data TreeZipper a = TreeZipper { branches :: [Either (Tree a) (Tree a)], subtree :: Tree a }
instance Zipper (TreeZipper a) where
go'up TreeZipper { branches = [] } = Nothing
go'up TreeZipper { branches = (Left l):bs, subtree = r } =
Just $ TreeZipper { branches = bs, subtree = Node { left'child = l, right'child = r } }
go'up TreeZipper { branches = (Right r):bs, subtree = l } =
Just $ TreeZipper { branches = bs, subtree = Node { left'child = l, right'child = r } }
go'down TreeZipper { subtree = Leaf a } = Nothing
go'down TreeZipper { branches = bs, subtree = Node { left'child = l, right'child = r } } =
Just $ TreeZipper { branches = (Right r):bs, subtree = l }
go'left TreeZipper { branches = [] } = Nothing
go'left TreeZipper { branches = (Right r):bs } = Nothing
go'left TreeZipper { branches = (Left l):bs, subtree = r } =
Just $ TreeZipper { branches = (Right r):bs, subtree = l }
go'right TreeZipper { branches = [] } = Nothing
go'right TreeZipper { branches = (Left l):bs } = Nothing
go'right TreeZipper { branches = (Right r):bs, subtree = l } =
Just $ TreeZipper { branches = (Left l):bs, subtree = r }
instance Zippable (Tree a) where
zipper t = TreeZipper { branches = [], subtree = t }
get TreeZipper { subtree = s } = s
put z s = z { subtree = s }
我无法编译,我只为每个Zippable
实例定义收到很多错误:
Zipper.hs:28:14: Couldn't match expected type `z' against inferred type `ListZipper a' `z' is a rigid type variable bound by the type signature for `zipper' at Zipper.hs:10:20 In the expression: ListZipper {preceding = [], following = as} In the definition of `zipper': zipper as = ListZipper {preceding = [], following = as} In the definition for method `zipper'
所以我不确定从哪里开始。我怀疑我的问题是我正在尝试绑定这两个实例
同时,(Zipper z) =>
声明只需要z
为Zipper
。
答案 0 :(得分:8)
您还可以使用类型同义词系列,而不是多参数类型类和功能依赖项。在这些情况下,它们提供了更清晰,更易于理解的解决方案。在这种情况下,类和实例将成为:
class Zippable t where
type ZipperType t :: *
enter :: t -> ZipperType t
focus :: ZipperType t -> t
instance Zippable [a] where
type ZipperType [a] = ListZipper a
enter = ...
focus = ...
对于已经熟悉Haskell的人来说,Fun with type functions是类型同义词系列的绝佳介绍。我还写了an article关于如何经常使用类型同义词系列而不是之前的函数依赖项。
希望这有帮助!
答案 1 :(得分:7)
(旁白:你的go'up
命名方案是......具有创造性.Haskell风格通常是camelCase。)
你走在正确的轨道上。你所写的内容相当于以下内容。
{-# LANGUAGE RankNTypes #-}
instance Zippable [a] where
zipper = ... :: forall z. (Zipper z) => [a] -> z
get = ... :: forall z. (Zipper z) => z -> [a]
set = ... :: forall z. (Zipper z) => z -> [a] -> z
(对于所有类型z
,给定Zipper z
,存在zipper :: [a] -> z
。)
您需要定义zipper = ... :: [a] -> ListZipper a
,这显然过于严格。
您的代码将通过以下最小的更改进行检查:
{-# LANGUAGE MultiParamTypeClasses #-}
class (Zipper z) => Zippable z t where
zipper :: t -> z
get :: z -> t
set :: z -> t -> z
instance Zippable (ListZipper a) [a] where
...
instance Zippable (TreeZipper a) (Tree a) where
...
见multi-parameter type classes。它是后Haskell'98扩展,但Haskell实现广泛支持它。