我的prolog程序解决3个水壶拼图有什么问题?

时间:2012-01-05 19:55:59

标签: prolog dcg water-jug-problem

任何人都可以找到为什么我的代码中没有任何真正的答案吗?例如,我写go(7,3,l),我想它应该将3升水移到第二个水壶,但根据序言它是错误的。怎么了?

:- dynamic go/3.
:- dynamic cur_state/1,init/5.
:- dynamic end_state/1, final/5.

cur_state(State):-State = state(10,0,0,7,l).
end_state(State):-State = state(0,3,3,0,r).

pour(state(D1,D2,D3,n,l),move(D,C,r),state(D,C,D3,n,r)) :-
        D is D1-n,
        C is D2+n.
pour(state(D1,D2,D3,n,r),move(D,C,l),state(D,C,D3,n,l)) :-
        D is D1-n,
        C is D2.
pour(state(D1,D2,D3,n,l),move(D,C,r),state(D,D2,C,n,r)) :-
        D is D1-n,
        C is D3+n.
pour(state(D1,D2,D3,n,l),move(D,C,r),state(D1,D,C,n,r)) :-
        D is D2-n,
        C is D3+n.
pour(state(D1,D2,D3,n,r),move(D,C,l),state(D1,D,C,n,l)) :-
        D is D2-n,
        C is D1+n.
pour(state(D1,D2,D3,n,r),move(D,C,l),state(D1,D,c,n,l)) :-
        D is D2-n,
        C is D3.
pour(state(D1,D2,D3,n,l),move(D,C,r),state(C,D2,D,n,r)) :-
        D is D3-n,
        C is D1.
pour(state(D1,D2,D3,n,r),move(D,C,l),state(D1,C,D,n,l)) :-
        D is D3-n,
        C is D2+n.
pour(state(D1,D2,D3,n,r),move(D,C,l),state(C,D2,D,n,l)) :-
        D is D3-n,
        C is D1+n.

carry(7,0).
carry(3,0).
carry(10,0).
carry(7,0).
carry(7,3).

legal(10,X,Y):-X+Y<10.
legal(X,Y,Z):-X+Y+Z<10.
legal(X,7,Y):-X+Y=<3.
legal(X,Y,3):-X+Y=<7.

newstate(state(D1,D2,D3,n,l),state(D11,D22,D33,n1,r)):-
        carry(M,C),
        M=<7,C=<3,
        D22 is D2+n,
        D11 is D1-n,
    D3 is D33,
    n1 is n,
        D2=<7,D1=<10,
    legal(D1,D2,D3).

newstate(state(D1,D2,D3,n,r),state(D11,D22,D33,n1,l)):-
        carry(M,C),
        M=<10,C=<100,
        D11 is D1-n,
    D22 is D2,
    D33 is D3,
        D1=<10,
    legal(D1,D2,D3).

newstate(state(D1,D2,D3,n,l),state(D11,D22,D33,n1,r)):-
        carry(M,C),
        M=<10,C<3,
        D11 is D1-n,
        D33 is D3+n,
    D22 is D2,
        D1=<10,D3=<3,
    legal(D1,D2,D3).

newstate(state(D1,D2,D3,n,r),state(D11,D22,D33,n1,l)):-
        carry(M,C),
        M=<7,C=<3,
        D22 is D2-n,
        D33 is D1+n,
        D11 is D1,
    D2=<7,D1=<10,
    legal(D1,D2,D3).

newstate(state(D1,D2,D3,n,l),state(D11,D22,D33,n1,r)):-
        carry(M,C),
        M=<7,C=0,
        D22 is D2-n,
        D33 is D3+n,
        D11 is D1,
    D2=<7,D3=<3,
    legal(D1,D2,D3).

newstate(state(D1,D2,D3,n,r),state(D11,D22,D33,n1,l)):-
        carry(M,C),
        M=<7,C=<100,
        D22 is D2-n,
    D33 is D3,
    D11 is D1,    
    D2=<7,
    legal(D1,D2,D3).

newstate(state(D1,D2,D3,n,r),state(D11,D22,D33,n1,l)):-
        carry(M,C),
        M=<3,C=<7,
        D22 is D2+n,
        D33 is D3-n,
        D11 is D1,
    D3=<3,D2=<7,
    legal(D1,D2,D3).

newstate(state(D1,D2,D3,n,r),state(D11,D22,D33,n1,l)):-
        carry(M,C),
        M=<3,C=<100,
        D11 is D1+n,
        D33 is D3-n,
        D22 is D2,
    D3=<3,D1=<10,
    legal(D1,D2,D3).

newstate(state(D1,D2,D3,n,l),state(D11,D22,D33,n1,r)):-
        carry(M,C),
        M=<3,C=<100,
        D33 is D3-n,
        D22 is D2,
    D11 is D1,  
    D3=<3,
    legal(D1,D2,D3).


eisodos(_):- cur_state(State),write(State),nl.

init(S1,S2,S3,S4,S5):-assert(cur_state(State):-State = state(S1,S2,S3,S4,S5)),write('Arxikh:'),
   write(state(S1,S2,S3,S4,S5)),retractall(init(S1,S2,S3,S4,S5)),nl.

final(S1,S2,S3,S4,S5):-assert(end_state(State):-State = state(S1,S2,S3,S4,S5)),write('Telikh:'),
   write(state(S1,S2,S3,S4,S5)),retractall(init1(S1,S2,S3,S4,S5)),nl.

go(Move1,Move2,Move3):-cur_state(State),newstate(State,NextState),
        pour(State,move(Move1,Move2,Move3), NextState),
        retractall(cur_state(State):-State = state(_,_,_,_,_)),asserta(cur_state(NextState)),
        ((end_state(NextState),write('Bravo!!!!')) ;(write(' ---*Eiste sthn katastash --- :'),write(NextState))),nl.

3 个答案:

答案 0 :(得分:3)

扩展@Mog的答案,如果你想找到最短的解决方案,我建议使用迭代加深。以下是基于@Mog发布的代码(因此解决了与OP发布的问题略有不同的相同问题)。由于我们想要描述一个列表(移动),DCG表示法很方便:

solution(Path) :- length(Path, _), phrase(path([0-3, 0-5, 8-8]), Path).

path(State) --> { equivalent(State, [0-3, 4-5, 4-8]) }.
path(State0) --> [From-To],
        { move(State0, State), State = [_-From, _-To, _] },
        path(State).

equivalent(State1, State2) :- forall(member(X, State1), member(X, State2)).

move(State, [NewX-From, NewY-To|NewRest]) :-
    select(X-From, State, Rest),
    X \== 0,
    select(Y-To, Rest, NewRest),
    Fillable is To - Y,
    ToFill is min(X, Fillable),
    NewY is Y + ToFill,
    NewX is X - ToFill.

示例查询:

?- solution(Ps).
Ps = [8-5, 5-3, 3-8, 5-3, 8-5, 5-3, 3-8] .

答案 1 :(得分:2)

正如我在评论中所说,我有点不知道如何帮助你完成当前的工作,因为它有很多错误的东西。我建议你阅读一本关于Prolog的精彩教程(例如Learn Prolog now),这样你就可以掌握语言基础知识。如果您有兴趣,这是解决问题的简单方法。如果您不希望破坏您的问题,请不要进一步阅读:](我发布的那个是关于3/5/8壶和4/4分裂)。

go(Path) :-
    solve([0-3, 0-5, 8-8], [], [], Temp),
    reverse(Temp, Path).

solve(State, _Visited, Path, Path) :-
    equivalent(State, [0-3, 4-5, 4-8]).
solve(State, Visited, Acc, Path) :-
    move(State, NewState),
    NewState = [_-From, _-To|_],
    forall(member(Past, Visited), \+ equivalent(Past, NewState)),
    solve(NewState, [NewState|Visited], [From-To|Acc], Path).

equivalent(State1, State2) :-
    forall(member(X, State1), member(X, State2)).

move(State, [NewX-From, NewY-To|NewRest]) :-
    select(X-From, State, Rest),
    X \== 0,
    select(Y-To, Rest, NewRest),
    Fillable is To - Y,
    ToFill is min(X, Fillable),
    NewY is Y + ToFill,
    NewX is X - ToFill.

如果您在阅读有关prolog的更多信息后需要解释代码,请不要犹豫!

答案 2 :(得分:0)

首先需要纠正它的基本语法:变量必须以大写字母开头,所以例如你必须改变这个规则

pour(state(D1,D2,D3,n,l),move(D,C,r),state(D,C,D3,n,r)) :-
    D is D1-n,
    C is D2+n.

pour(state(D1,D2,D3,N,l),move(D,C,r),state(D,C,D3,N,r)) :-
    D is D1-N,
    C is D2+N.

newstate(state(D1,D2,D3,n,l),state(D11,D22,D33,n1,r)):-
        carry(M,C),
        M=<7,C=<3,
        D22 is D2+n,
        D11 is D1-n,
    D3 is D33,
    n1 is n,
        D2=<7,D1=<10,
    legal(D1,D2,D3).

newstate(state(D1,D2,D3,N,l),state(D11,D22,D33,N1,r)):-
    carry(M,C),
    M=<7,C=<3,
    D22 is D2+N,
    D11 is D1-N,
    D3 is D33,
    N1 is N,
    D2=<7,D1=<10,
    legal(D1,D2,D3).

您应该意识到N1仅在第一个newstate / 2过程中被赋值:然后更正该规则的其他实例。

然后你应该删除无用的动态断言:想想你的实际断言/回收用法:你需要的是在任何一步改变状态在'jugs'之间移动'water':所以你应该在进入循环时断言/收回状态/ 5,从初始状态(在启动程序中断言)到最终可接受状态,进行测试以停止循环。

但是这种基于状态变化的风格导致非常难以调试。请尝试删除altogheter动态,断言/撤消,并绕过循环中的状态。