如何通过观察提取lmer固定效果?

时间:2011-12-30 18:50:28

标签: r glm

我有一个lme对象,由一些重复测量营养素摄入量数据构建(每个RespondentID两个24小时摄入量):

Male.lme2 <- lmer(BoxCoxXY ~ -1 + AgeFactor + IntakeDay + (1|RespondentID),
    data = Male.Data, 
    weights = SampleWeight)

我可以RespondentID使用ranef(Male.lme1)成功检索随机效果。我还希望通过RespondentID收集固定效果的结果。 coef(Male.lme1)并未提供我需要的内容,如下所示。

> summary(Male.lme1)
Linear mixed model fit by REML 
Formula: BoxCoxXY ~ AgeFactor + IntakeDay + (1 | RespondentID) 
   Data: Male.Data 
  AIC   BIC logLik deviance REMLdev
  9994 10039  -4990     9952    9980
Random effects:
 Groups       Name        Variance Std.Dev.
 RespondentID (Intercept) 0.19408  0.44055 
 Residual                 0.37491  0.61230 
Number of obs: 4498, groups: RespondentID, 2249

Fixed effects:
                    Estimate Std. Error t value
(Intercept)         13.98016    0.03405   410.6
AgeFactor4to8        0.50572    0.04084    12.4
AgeFactor9to13       0.94329    0.04159    22.7
AgeFactor14to18      1.30654    0.04312    30.3
IntakeDayDay2Intake -0.13871    0.01809    -7.7

Correlation of Fixed Effects:
            (Intr) AgFc48 AgF913 AF1418
AgeFactr4t8 -0.775                     
AgeFctr9t13 -0.761  0.634              
AgFctr14t18 -0.734  0.612  0.601       
IntkDyDy2In -0.266  0.000  0.000  0.000

我已将拟合结果附加到我的数据中,head(Male.Data)显示

   NutrientID RespondentID Gender Age SampleWeight  IntakeDay IntakeAmt AgeFactor BoxCoxXY  lmefits
2         267       100020      1  12    0.4952835 Day1Intake 12145.852     9to13 15.61196 15.22633
7         267       100419      1  14    0.3632839 Day1Intake  9591.953    14to18 15.01444 15.31373
8         267       100459      1  11    0.4952835 Day1Intake  7838.713     9to13 14.51458 15.00062
12        267       101138      1  15    1.3258785 Day1Intake 11113.266    14to18 15.38541 15.75337
14        267       101214      1   6    2.1198688 Day1Intake  7150.133      4to8 14.29022 14.32658
18        267       101389      1   5    2.1198688 Day1Intake  5091.528      4to8 13.47928 14.58117

coef(Male.lme1)的前几行是:

$RespondentID
       (Intercept) AgeFactor4to8 AgeFactor9to13 AgeFactor14to18 IntakeDayDay2Intake
100020    14.28304     0.5057221      0.9432941        1.306542          -0.1387098
100419    14.00719     0.5057221      0.9432941        1.306542          -0.1387098
100459    14.05732     0.5057221      0.9432941        1.306542          -0.1387098
101138    14.44682     0.5057221      0.9432941        1.306542          -0.1387098
101214    13.82086     0.5057221      0.9432941        1.306542          -0.1387098
101389    14.07545     0.5057221      0.9432941        1.306542          -0.1387098

要演示coef结果如何与Male.Data(使用Male.Data$lmefits <- fitted(Male.lme1)抓取的拟合估算值)相关,对于第一个具有AgeFactor等级9-13的RespondentID: - 拟合值为15.22633,等于 - 来自系数 - (Intercept) + (AgeFactor9-13) = 14.28304 + 0.9432941

是否有一个聪明的命令供我使用,我想要自动想要,即提取每个主题的固定效果估计值,或者我是否面临一系列if语句试图应用在扣除拦截后的随机效应贡献后,为每个受试者纠正AgeFactor等级以获得正确的固定效果估计值?

更新,道歉,试图减少我提供的输出并忘记了str()。输出是:

>str(Male.Data)
'data.frame':   4498 obs. of  11 variables:
 $ NutrientID  : int  267 267 267 267 267 267 267 267 267 267 ...
 $ RespondentID: Factor w/ 2249 levels "100020","100419",..: 1 2 3 4 5 6 7 8 9 10 ...
 $ Gender      : int  1 1 1 1 1 1 1 1 1 1 ...
 $ Age         : int  12 14 11 15 6 5 10 2 2 9 ...
 $ BodyWeight  : num  51.6 46.3 46.1 63.2 28.4 18 38.2 14.4 14.6 32.1 ...
 $ SampleWeight: num  0.495 0.363 0.495 1.326 2.12 ...
 $ IntakeDay   : Factor w/ 2 levels "Day1Intake","Day2Intake": 1 1 1 1 1 1 1 1 1 1 ...
 $ IntakeAmt   : num  12146 9592 7839 11113 7150 ...
 $ AgeFactor   : Factor w/ 4 levels "1to3","4to8",..: 3 4 3 4 2 2 3 1 1 3 ...
 $ BoxCoxXY    : num  15.6 15 14.5 15.4 14.3 ...
 $ lmefits     : num  15.2 15.3 15 15.8 14.3 ...

BodyWeight和Gender未被使用(这是男性数据,因此所有的Gender值都相同),NutrientID也为数据固定。

我一直在做我发布的可怕的ifelse陈述,所以会立即尝试你的建议。 :)

Update2:这与​​我当前的数据完美配合,并且应该能够适应未来的新数据,这要归功于DWin在评论中的额外帮助。 :)

AgeLevels <- length(unique(Male.Data$AgeFactor))
Temp <- as.data.frame(fixef(Male.lme1)['(Intercept)'] + 
c(0,fixef(Male.lme1)[2:AgeLevels])[
      match(Male.Data$AgeFactor, c("1to3", "4to8", "9to13","14to18",  "19to30","31to50","51to70","71Plus") )] + 
c(0,fixef(Male.lme1)[(AgeLevels+1)])[
      match(Male.Data$IntakeDay, c("Day1Intake","Day2Intake") )])
names(Temp) <- c("FxdEffct")

2 个答案:

答案 0 :(得分:7)

以下是我总是最容易在 lme4 -package中提取个体的固定效果和随机效果组件。它实际上为每个观察提取了相应的拟合。假设我们有一个形式的混合效应模型:

y = Xb + Zu + e

其中Xb是固定效果而Zu是随机效应,我们可以提取组件(以 lme4 的睡眠研究为例):

library(lme4)
fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy)

# Xb 
fix <- getME(fm1,'X') %*% fixef(fm1)
# Zu
ran <- t(as.matrix(getME(fm1,'Zt'))) %*% unlist(ranef(fm1))
# Xb + Zu
fixran <- fix + ran

我知道这可以作为从线性混合效果模型中提取组件的通用方法。对于非线性模型,模型矩阵X包含重复,您可能需要稍微调整上述代码。这是一些验证输出以及使用晶格的可视化:

> head(cbind(fix, ran, fixran, fitted(fm1)))
         [,1]      [,2]     [,3]     [,4]
[1,] 251.4051  2.257187 253.6623 253.6623
[2,] 261.8724 11.456439 273.3288 273.3288
[3,] 272.3397 20.655691 292.9954 292.9954
[4,] 282.8070 29.854944 312.6619 312.6619
[5,] 293.2742 39.054196 332.3284 332.3284
[6,] 303.7415 48.253449 351.9950 351.9950

# Xb + Zu
> all(round((fixran),6) == round(fitted(fm1),6))
[1] TRUE

# e = y - (Xb + Zu)
> all(round(resid(fm1),6) == round(sleepstudy[,"Reaction"]-(fixran),6))
[1] TRUE

nobs <- 10 # 10 observations per subject
legend = list(text=list(c("y", "Xb + Zu", "Xb")), lines = list(col=c("blue", "red", "black"), pch=c(1,1,1), lwd=c(1,1,1), type=c("b","b","b")))
require(lattice)
xyplot(
    Reaction ~ Days | Subject, data = sleepstudy,
    panel = function(x, y, ...){
        panel.points(x, y, type='b', col='blue')
        panel.points(x, fix[(1+nobs*(panel.number()-1)):(nobs*(panel.number()))], type='b', col='black')
        panel.points(x, fixran[(1+nobs*(panel.number()-1)):(nobs*(panel.number()))], type='b', col='red')
    },
    key = legend
)

enter image description here

答案 1 :(得分:3)

它会是这样的(虽然你真的应该给我们str(Male.Data)的结果,因为模型输出没有告诉我们基线值的因子水平: )

#First look at the coefficients
fixef(Male.lme2)

#Then do the calculations
fixef(Male.lme2)[`(Intercept)`] + 
c(0,fixef(Male.lme2)[2:4])[
          match(Male.Data$AgeFactor, c("1to3", "4to8", "9to13","14to18") )] + 
c(0,fixef(Male.lme2)[5])[
          match(Male.Data$IntakeDay, c("Day1Intake","Day2Intake") )]

您基本上是通过match函数运行原始数据来选择要添加到拦截的正确系数...如果数据是因子的基本级别(其拼写我是0)将为0我在猜猜。)

编辑:我刚注意到你在公式中加了一个“-1”,所以也许你的所有AgeFactor术语都列在输出中,你可以在系数向量中找出0,并在比赛中记下发明的AgeFactor等级表格矢量。