我正在读一本关于AI的书,目前正在学习寻路(目前正在进行Dijkstra算法)
在示例代码中,他正在使用他称为IndexedPriorityQueue的东西,将其实现为双向堆。我找不到任何有关谷歌双向堆的信息。
此搜索算法使用索引优先级队列实现。 优先级队列(简称PQ)是保留其元素的队列 按优先顺序排序(那时没有惊喜)。这类 数据结构可用于存储目标节点 搜索边界上的边缘,按距离增加(成本)的顺序 来自源节点。这种方法保证了节点在 PQ的前面将是SPT上尚未存在的节点 最接近源节点。
这是如何实现的:
//----------------------- IndexedPriorityQLow ---------------------------
//
// Priority queue based on an index into a set of keys. The queue is
// maintained as a 2-way heap.
//
// The priority in this implementation is the lowest valued key
//------------------------------------------------------------------------
template<class KeyType>
class IndexedPriorityQLow
{
private:
std::vector<KeyType>& m_vecKeys;
std::vector<int> m_Heap;
std::vector<int> m_invHeap;
int m_iSize,
m_iMaxSize;
void Swap(int a, int b)
{
int temp = m_Heap[a]; m_Heap[a] = m_Heap[b]; m_Heap[b] = temp;
//change the handles too
m_invHeap[m_Heap[a]] = a; m_invHeap[m_Heap[b]] = b;
}
void ReorderUpwards(int nd)
{
//move up the heap swapping the elements until the heap is ordered
while ( (nd>1) && (m_vecKeys[m_Heap[nd/2]] > m_vecKeys[m_Heap[nd]]) )
{
Swap(nd/2, nd);
nd /= 2;
}
}
void ReorderDownwards(int nd, int HeapSize)
{
//move down the heap from node nd swapping the elements until
//the heap is reordered
while (2*nd <= HeapSize)
{
int child = 2 * nd;
//set child to smaller of nd's two children
if ((child < HeapSize) && (m_vecKeys[m_Heap[child]] > m_vecKeys[m_Heap[child+1]]))
{
++child;
}
//if this nd is larger than its child, swap
if (m_vecKeys[m_Heap[nd]] > m_vecKeys[m_Heap[child]])
{
Swap(child, nd);
//move the current node down the tree
nd = child;
}
else
{
break;
}
}
}
public:
//you must pass the constructor a reference to the std::vector the PQ
//will be indexing into and the maximum size of the queue.
IndexedPriorityQLow(std::vector<KeyType>& keys,
int MaxSize):m_vecKeys(keys),
m_iMaxSize(MaxSize),
m_iSize(0)
{
m_Heap.assign(MaxSize+1, 0);
m_invHeap.assign(MaxSize+1, 0);
}
bool empty()const{return (m_iSize==0);}
//to insert an item into the queue it gets added to the end of the heap
//and then the heap is reordered from the bottom up.
void insert(const int idx)
{
assert (m_iSize+1 <= m_iMaxSize);
++m_iSize;
m_Heap[m_iSize] = idx;
m_invHeap[idx] = m_iSize;
ReorderUpwards(m_iSize);
}
//to get the min item the first element is exchanged with the lowest
//in the heap and then the heap is reordered from the top down.
int Pop()
{
Swap(1, m_iSize);
ReorderDownwards(1, m_iSize-1);
return m_Heap[m_iSize--];
}
//if the value of one of the client key's changes then call this with
//the key's index to adjust the queue accordingly
void ChangePriority(const int idx)
{
ReorderUpwards(m_invHeap[idx]);
}
};
任何人都可以向我提供有关双向堆的更多信息吗?
答案 0 :(得分:3)
“双向堆”只是指标准heap data structure。此代码显示了一种非常常见的实现方法,即通过将堆的树结构展平为数组,使得节点父节点的索引始终是节点索引的一半(向下舍入)。 / p>
答案 1 :(得分:0)
它是作为一个双向堆实现的,因为他省略了堆中的0索引以使父子计算更容易,但是键值vektor从0索引开始,因此反向堆存储索引,堆键存储索引keyVector的密钥要从keyVector获取适当的值,你需要做类似这样的keyVector [heap [invHeap [itemIndex]]]其余代码只是标准的二进制堆实现。