测试树是否对称的基础算法是什么?因为它是一个二叉树,我认为它将是一个递归的排序
正式问题如下:
如果二进制树的左右子树是相同的镜像,即二叉树是对称的,则它是自身的镜像。 最好用几个例子来解释。
1
/ \
2 2
TRUE
1
/ \
2 2
\
3
FALSE
1
/ \
2 2
/ \ / \
4 3 3 4
TRUE
1
/ \
2 2
/ \ / \
3 4 3 4
FALSE
1
/ \
2 2
/ \
3 3
TRUE
在选择的编程语言中,定义BTree类/ C结构和相关方法以检查树是否为镜像。对于静态类型语言,您可以假设节点值都是整数。
Class/structure definition
BTree {
BTree left;
BTree right;
int value;
}
假设调用者跟踪树的根,并在其上调用函数isMirror()。
另外,如果定义一个类,如果数据元素不可公开访问,请确保提供无参数构造函数和getter / setter方法。
答案 0 :(得分:104)
如何在以下函数上调用mirrorEquals(root.left,root.right): -
boolean mirrorEquals(BTree left, BTree right) {
if (left == null || right == null) return left == null && right == null;
return left.value == right.value
&& mirrorEquals(left.left, right.right)
&& mirrorEquals(left.right, right.left);
}
基本上比较左子树和反右子树,在根上绘制一条假想的反转线。
答案 1 :(得分:9)
解决方案1 - 递归:
bool isMirror(BinaryTreeNode *a, BinaryTreeNode *b)
{
return (a && b) ?
(a->m_nValue==b->m_nValue
&& isMirror(a->m_pLeft,b->m_pRight)
&& isMirror(a->m_pRight,b->m_pLeft)) :
(a == b);
}
bool isMirrorItselfRecursively(BinaryTreeNode *root)
{
if (!root)
return true;
return isMirror(root->m_pLeft, root->m_pRight);
}
解决方案2 - 迭代地:
bool isMirrorItselfIteratively(BinaryTreeNode *root)
{
/// use single queue
if(!root) return true;
queue<BinaryTreeNode *> q;
q.push(root->m_pLeft);
q.push(root->m_pRight);
BinaryTreeNode *l, *r;
while(!q.empty()) {
l = q.front();
q.pop();
r = q.front();
q.pop();
if(l==NULL && r==NULL) continue;
if(l==NULL || r==NULL || l->m_nValue!=r->m_nValue) return false;
q.push(l->m_pLeft);
q.push(r->m_pRight);
q.push(l->m_pRight);
q.push(r->m_pLeft);
}
return true;
}
答案 2 :(得分:5)
Java中的递归和迭代解决方案使用上面讨论的方法
递归
public Boolean isSymmetric(TreeNode root) {
if (root == null) {
return true;
}
return isSymmetricInternal(root.left, root.right);
}
private Boolean isSymmetricInternal(TreeNode leftNode,
TreeNode rightNode) {
boolean result = false;
// If both null then true
if (leftNode == null && rightNode == null) {
result = true;
}
if (leftNode != null && rightNode != null) {
result = (leftNode.data == rightNode.data)
&& isSymmetricInternal(leftNode.left, rightNode.right)
&& isSymmetricInternal(leftNode.right, rightNode.left);
}
return result;
}
迭代使用 LinkedList 作为队列
private Boolean isSymmetricRecursive(TreeNode root) {
boolean result = false;
if (root == null) {
return= true;
}
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root.left);
queue.offer(root.right);
while (!queue.isEmpty()) {
TreeNode left = queue.poll();
TreeNode right = queue.poll();
if (left == null && right == null) {
result = true;
}
else if (left == null ||
right == null ||
left.data != right.data) {
// It is required to set result = false here
result = false;
break;
}
else if (left != null && right != null) {
queue.offer(left.left);
queue.offer(right.right);
queue.offer(left.right);
queue.offer(right.left);
}
}
return result;
}
测试用例
@Test
public void testTree() {
TreeNode root0 = new TreeNode(1);
assertTrue(isSymmetric(root0));
assertTrue(isSymmetricRecursive(root0));
TreeNode root1 = new TreeNode(1, new TreeNode(2), new TreeNode(2));
assertTrue(isSymmetric(root1));
assertTrue(isSymmetricRecursive(root1));
TreeNode root2 = new TreeNode(1,
new TreeNode(2, null, new TreeNode(3)), new TreeNode(2));
assertFalse(isSymmetric(root2));
assertFalse(isSymmetricRecursive(root2));
TreeNode root3 = new TreeNode(1, new TreeNode(2, new TreeNode(4),
new TreeNode(3)), new TreeNode(2, new TreeNode(3),
new TreeNode(4)));
assertTrue(isTreeSymmetric(root3));
assertTrue(isSymmetricRecursive(root3));
TreeNode root4 = new TreeNode(1, new TreeNode(2, new TreeNode(3),
new TreeNode(4)), new TreeNode(2, new TreeNode(3),
new TreeNode(4)));
assertFalse(isSymmetric(root4));
assertFalse(isSymmetricRecursive(root4));
}
树节点类
public class TreeNode {
int data;
public TreeNode left;
public TreeNode right;
public TreeNode(int data){
this(data, null, null);
}
public TreeNode(int data, TreeNode left, TreeNode right)
{
this.data = data;
this.left = left;
this.right = right;
}
}
答案 3 :(得分:4)
来自@gvijay的递归解决方案非常清楚,这是一个迭代解决方案。
从上到下检查树的每一行,看看这些值是否为回文。如果他们都是,那么,这是一面镜子。您需要实现一个算法来访问每一行,并为稀疏树包含空值。在伪代码中:
boolean isMirror(BTree tree) {
foreach (List<Integer> row : tree.rows() {
if (row != row.reverse()) return false;
}
return true;
}
诀窍是设计算法迭代树的行,同时考虑到稀疏树应该具有空值作为占位符。这个Java实现似乎没问题:
public static boolean isMirror(BTree root) {
List<BTree> thisRow, nextRow;
thisRow = Arrays.asList(root);
while (true) {
// Return false if this row is not a palindrome.
for (int i=0; i<thisRow.size()/2; i++) {
BTree x = thisRow.get(i);
BTree y = thisRow.get(thisRow.size()-i-1);
if ((x!=null) && (y!=null)
&& (x.value != y.value))
return false;
if (((x==null) && (y!=null))
|| (x!=null) && (y==null))
return false;
}
// Move on to the next row.
nextRow = new ArrayList<BTree>();
for (BTree tree : thisRow) {
nextRow.add((tree==null) ? null : tree.lt);
nextRow.add((tree==null) ? null : tree.rt);
}
boolean allNull = true;
for (BTree tree : nextRow) {
if (tree != null) allNull = false;
}
// If the row is all empty then we're done.
if (allNull) return true;
thisRow = nextRow;
}
}
答案 4 :(得分:2)
修改强>
正如评论中指出的那样,我的第一个算法版本对某些输入失败了。我不打算重新发明轮子,我只是使用@gvijay正确算法提供Python答案。首先,二叉树的表示:
class BTree(object):
def __init__(self, l, r, v):
self.left = l
self.right = r
self.value = v
def is_mirror(self):
return self._mirror_equals(self.left, self.right)
def _mirror_equals(self, left, right):
if left is None or right is None:
return left is None and right is None
return (left.value == right.value
and self._mirror_equals(left.left, right.right)
and self._mirror_equals(left.right, right.left))
我使用问题和中的所有样本树测试了上面的代码,这些树返回了错误的结果,如评论中所述。现在结果对所有情况都是正确的:
root1 = BTree(
BTree(None, None, 2),
BTree(None, None, 2),
1)
root1.is_mirror() # True
root2 = BTree(
BTree(None, BTree(None, None, 3), 2),
BTree(None, None, 2),
1)
root2.is_mirror() # False
root3 = BTree(
BTree(
BTree(None, None, 4),
BTree(None, None, 3),
2),
BTree(
BTree(None, None, 3),
BTree(None, None, 4),
2),
1)
root3.is_mirror() # True
root4 = BTree(
BTree(
BTree(None, None, 3),
BTree(None, None, 4),
2),
BTree(
BTree(None, None, 3),
BTree(None, None, 4),
2),
1)
root4.is_mirror() # False
root5 = BTree(
BTree(BTree(None, None, 3), None, 2),
BTree(None, BTree(None, None, 3), 2),
1)
root5.is_mirror() # True
root6 = BTree(BTree(None, None, 1), None, 1)
root6.is_mirror() # False
root7 = BTree(BTree(BTree(None, None, 1), None, 2), None, 1)
root7.is_mirror() # False
答案 5 :(得分:2)
这是每个gvijay的C ++解决方案
bool isMirrorTree(BTnode* LP, BTnode* RP)
{
if (LP == NULL || RP == NULL) // if either is null check that both are NULL
{
return ( LP == NULL && RP == NULL );
}
// check that data is equal and then recurse
return LP->data == RP->data &&
isMirrorTree( LP->left, RP->right ) &&
isMirrorTree( LP->right, RP->left );
}
答案 6 :(得分:1)
以下是关于C-COde的解决方案
isMirror(root)
{
Symmetric(root->left, root->right);
}
Symmetric(root1,root2)
{
if( (root1->left EX-NOR root2->right) && (root1->right EX-NOR root2->left) && (root1->value==root2->value) )
//exnor operation will return true if either both present or both not present
// a EX-NOR b =(!a && !b) || (a && b))
{
Symmetric(root1->left, root2->right);
Symmetric(root1->right, root2->left);
}
else return false;
}
答案 7 :(得分:1)
如果有人需要Swift版本,请点击此处。
另一种方法是反转其中一个子树,并以直接的方式比较两个结果的子树。
func compareTrees(left: TreeNode?, right: TreeNode?) -> Bool {
var res = false
if left == nil && right == nil {return true}
if left != nil && right != nil {
res = left!.val == right!.val &&
compareTrees(left!.left, right: right!.left) &&
compareTrees(left!.right, right: right!.right)
}
return res
}
func invertTree(node: TreeNode?) {
if node == nil {return}
var tmp = node!.left
node!.left = node!.right
node!.right = tmp
invertTree(node!.left)
invertTree(node!.right)
}
// and run it as:
if root == nil {print("Y")}
invertTree(root!.right)
compareTrees(root!.left, right: root!.right) ? print("Y") : print("N")
答案 8 :(得分:0)
略有不同的方法。
如何对二进制树进行inorder遍历,将所有内容存储在某些数据结构中,如字符串/数组。
遍历完成后,检查阵列中的元素是否形成回文结构。 没有那么有效的空间(递归需要O(log(n)),这个方法传说O(n))但这也可以。
答案 9 :(得分:0)
在python中使用稍微不同的方法的迭代解决方案。使用queue1按从左到右的顺序存储左子节点,使用queue2按从右到左的顺序存储右子节点并比较相等性。
def isSymmetric(root):
if not root:
return True
if not (root.left or root.right):
return True
q1 = collections.deque([root.left])
q2 = collections.deque([root.right])
while q1 and q2:
n1 = q1.popleft()
n2 = q2.popleft()
if n1 is None and n2 is None:
continue
if (n1 is None) ^ (n2 is None):
return False
if n1.val != n2.val:
return False
q1.append(n1.left)
q1.append(n1.right)
q2.append(n2.right)
q2.append(n2.left)
if not (q1 and q2):
return True
return False
答案 10 :(得分:0)
公共类SymmetricTree {
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
//int[] array = {1,2,2,3,4,4,3};
/*
* 1
* / \
* / \
* / \
* 2 2
* / \ / \
* / \ / \
* 3 4 4 3
*
* */
//int[] array = {1,2};
BinaryTree bt=new BinaryTree();
bt.data=1;
bt.left = new BinaryTree(2);
bt.right = new BinaryTree(2);
bt.left.right = new BinaryTree(3);
bt.right.right = new BinaryTree(3);
//bt=BinaryTree.buildATree(bt, array);
System.out.print(isSymmetric(bt));
BinaryTree.inOrderTraversal(bt);
}
public static boolean isSymmetric(BinaryTree root){
if(root==null)
return true;
return isSymmetricLR(root.left,root.right);
}
public static boolean isSymmetricLR(BinaryTree left, BinaryTree right){
if(left == null && right == null)
return true;
if(left!=null && right!=null)
return (left.data == right.data) &&
(isSymmetricLR(left.left, right.right)) &&
(isSymmetricLR(left.right, right.left));
return false;
}
}
答案 11 :(得分:0)
使用python
library(bench)
A <- matrix(runif(5000 * 5000), 5000)
bench::mark("Mat2Sym" = Mat2Sym(A, FALSE, 128),
"Matrix" = new("dspMatrix", x = A[lower.tri(A, TRUE)], Dim = dim(A),
uplo = "L"),
check = FALSE)
# expression min mean median max `itr/sec` mem_alloc n_gc n_itr
# <chr> <bch:tm> <bch:tm> <bch:tm> <bch:t> <dbl> <bch:byt> <dbl> <int>
#1 Mat2Sym 56.5ms 57.9ms 58ms 58.7ms 17.3 2.48KB 0 9
#2 Matrix 934.7ms 934.7ms 935ms 934.7ms 1.07 524.55MB 2 1
答案 12 :(得分:0)
我想在Python中添加一个解决方案,使某些人可能比其他方法更容易理解。这个想法是:
+1
添加到左孩子返回的值。-1
添加到右子级返回的值。l+r
返回给父级因此,如果l+r == 0
对于树中的任何节点,则锚定在该节点的子树是对称的。因此,仅当l+r == 0
位于根目录时,整个树才对称。
def check(root):
l = check(root.left)+1 if root.left else 0
r = check(root.right)-1 if root.right else 0
return l+r
def is_symmetric(root):
return root is not None and check(root) == 0
答案 13 :(得分:0)
使用 Queue ,因为我觉得递归有点难。
bool isSymmetric(TreeNode* root) {
queue<TreeNode*> q;
q.push(root);
q.push(root);
while(q.empty()==false){
TreeNode* a = q.front();
q.pop();
TreeNode* b = q.front();
q.pop();
if(a->val != b->val){
return false;
}
if(a->left == nullptr and b->right != nullptr)
return false;
if(a->left != nullptr and b->right == nullptr)
return false;
if(a->right != nullptr and b->left == nullptr)
return false;
if(a->right == nullptr and b->left != nullptr)
return false;
if(a->left != nullptr and b->right != nullptr){
q.push(a->left);
q.push(b->right);
}
if(a->right != nullptr and b->left != nullptr){
q.push(a->right);
q.push(b->left);
}`enter code here`
}
return true;
}
答案 14 :(得分:0)
araay = ["10" , "2", "2", "#", "1", "1", "#"]
让我们把它分解成每一步
step 1 = ["10"]
step 2 = [ "2", "2" ]
step 3 = ["#", "1", "1", "#"]
检查除第一步以外的每一步的镜像
让我们进行第 3 步。
step 3 = ["#", "1", "1", "#"]
把它从中间分成 2 个数组
step 3 1 = ["#", "1" ]
step 3 2 = ["1", "#"]
现在反转步骤 3 2
step 3 2 = ["1", "#"]
现在检查步骤 3 2 是否等于步骤 3 1
每一步都做上面的事情
如果都是镜像,那么二叉树就是镜像
const Input = ["10" , "2", "2", "#", "1", "1", "#"];
function isEqual(a,b)
{
// if length is not equal
if(a.length!=b.length)
return false;
else
{
// comapring each element of array
for(var i=0;i<a.length;i++)
if(a[i] !== b[i]){
return false;
}
return true;
}
}
// Response
let symetric = true ;
let stepSymetric = true ;
let mirror = true ;
// length of input
const length = Input.length ;
// const length = 31 ;
// lets create binary tree from it
const totalSteps =
Math.log(length + 1)/Math.log(2) ;
// check for symetric binary tree
function checkInt(n) { return parseInt(n) === n };
symetric = checkInt(totalSteps);
//now check for mirror
let goneArrayLength = 0 ;
for (let i = 0; i < totalSteps; i++) {
const cStep = Math.pow(2,i);
const stepArray = [];
// console.log(goneArrayLength);
// now update the step array
const start = goneArrayLength ;
const end = goneArrayLength + cStep ;
for (let j = start; j < end; j++) {
stepArray.push(Input[j])
}
console.log(stepArray);
// Now we have each step lets find they are mirror image or not
// check for even length
if(stepArray.length%2 !== 0 && i !== 0){
stepSymetric = false ;
}
const partitation = stepArray.length / 2 ;
const leftArray = stepArray.slice(0,partitation);
const rightArray = stepArray.slice(partitation , partitation * 2);
// console.log("leftArray");
// console.log(leftArray);
// console.log("rightArray");
// console.log(rightArray);
function mirrorCheck (){
let check = false;
if(cStep === 1){
return true ;
}
let array1 = leftArray;
let array2 = rightArray.reverse();
// console.log("first");
// console.log(array1);
// console.log("second");
// console.log(array2);
let equal = isEqual(array1 , array2)
// console.log(equal);
check = true ;
if(!equal){
// console.log("Noooooooooooooooo")
check = false ;
}
return check;
}
let mirrorC = mirrorCheck();
if(!mirrorC){
mirror = false;
}
goneArrayLength = goneArrayLength + cStep ;
}
console.log(mirror + " " + symetric + " " + stepSymetric )
if(mirror && symetric && stepSymetric ){
console.log("Mirror Image");
}
else{
console.log("Not mirror image")
}
// console.log(isSymetric);
// console.log(totalSteps);
答案 15 :(得分:-1)
我不是很有经验(仅仅在公司工作一年),但在我看来,这可以通过使用S =递归来解决
例如:
MYTREECLASS B1= new MYTREECLASS();
MYTREECLASS B2= new MYTREECLASS();
B1= OriginalTree;
B2=OriginalTRee;
Boolean CHECK(MYTREECLASS, MYTREECLASS)
{
if (B1.Node = B2.Node)
then (
CHECK(B1.Left, B2.Right);
CHECK(B1.Right,B2.Left)
)
elseIf(b1.Left==null or b2.right...blah blah ,,)
return False)
else return False,
如果匹配则返回true。