您将如何在Mathematica中执行数据透视表功能?

时间:2011-11-11 20:56:22

标签: wolfram-mathematica

PivotTables in Excel(或cross tabulations)非常有用。有没有人已经考虑过如何在Mathematica中实现类似的功能?

6 个答案:

答案 0 :(得分:10)

我不熟悉数据透视表的使用,但在上面链接的页面上举例说明,我建议:

Needs["Calendar`"]
key = # -> #2[[1]] & ~MapIndexed~
       {"Region", "Gender", "Style", "Ship Date", "Units", "Price", "Cost"};
choices = {
   {"North", "South", "East", "West"},
   {"Boy", "Girl"},
   {"Tee", "Golf", "Fancy"},
   IntegerString[#, 10, 2] <> "/2011" & /@ Range@12,
   Range@15,
   Range[8.00, 15.00, 0.01],
   Range[6.00, 14.00, 0.01]
   };
data = RandomChoice[#, 150] & /@ choices // Transpose;

这会创建data,如下所示:

 {"East", "Girl", "Golf", "03/2011", 6, 12.29`, 6.18`},
 {"West", "Boy", "Fancy", "08/2011", 6, 13.01`, 12.39`},
 {"North", "Girl", "Golf", "05/2011", 1, 14.87`, 12.89`},
 {"East", "Girl", "Golf", "09/2011", 3, 13.99`, 6.25`},
 {"North", "Girl", "Golf", "09/2011", 13, 12.66`, 8.57`},
 {"East", "Boy", "Fancy", "10/2011", 2, 14.46`, 6.85`},
 {"South", "Boy", "Golf", "11/2011", 13, 12.45`, 11.23`}
 ...

然后:

h1 = Union@data[[All, "Region" /. key]];
h2 = Union@data[[All, "Ship Date" /. key]];

Reap[
   Sow[#[[{"Units", "Ship Date"} /. key]], #[["Region" /. key]]] & ~Scan~ data,
   h1,
   Reap[Sow @@@ #2, h2, Total @ #2 &][[2]] &
][[2]];

TableForm[Join @@ %, TableHeadings -> {h1, h2}]

enter image description here

这是一个粗略的例子,但它提供了如何做到这一点的想法。如果您有更具体的要求,我会尝试解决它们。


以下是Sjoerd答案的更新方式。

Manipulate块在很大程度上被复制了,但我相信我的pivotTableData效率更高,我试图正确地定位符号,因为现在它被用作可用代码而不是粗略的例子。< / p>

我从相同的样本数据开始,但我嵌入了字段标题,因为我觉得这更能代表正常使用。

data = ImportString[#, "TSV"][[1]] & /@ Flatten[Import["http://lib.stat.cmu.edu/datasets/CPS_85_Wages"][[28 ;; -7]]];

data = Transpose[{
    data[[All, 1]], 
    data[[All, 2]] /. {1 -> "South", 0 -> "Elsewhere"}, 
    data[[All, 3]] /. {1 -> "Female", 0 -> "Male"},
    data[[All, 4]], 
    data[[All, 5]] /. {1 -> "Union Member", 0 -> "No member"}, 
    data[[All, 6]],
    data[[All, 7]], 
    data[[All, 8]] /. {1 -> "Other", 2 -> "Hispanic", 3 -> "White"}, 
    data[[All, 9]] /. {1 -> "Management", 2 -> "Sales", 3 -> "Clerical", 4 -> "Service", 5 -> "Professional", 6 -> "Other"}, 
    data[[All, 10]] /. {0 -> "Other", 1 -> "Manufacturing", 2 -> "Construction"}, 
    data[[All, 11]] /. {1 -> "Married", 0 -> "Unmarried"}
}];

PrependTo[data,
  {"Education", "South", "Sex", "Experience", "Union", "Wage", "Age", "Race", "Occupation", "Sector", "Marriatal status"}
  ];

我的pivotTableData是自包含的。

pivotTableData[data_, field1_, field2_, dependent_, op_] :=
  Module[{key, sow, h1, h2, ff},
    (key@# = #2[[1]]) & ~MapIndexed~ data[[1]];
    sow = #[[key /@ {dependent, field2}]] ~Sow~ #[[key@field1]] &;
    {h1, h2} = Union@data[[2 ;;, key@#]] & /@ {field1, field2};
    ff = # /. {{} -> Missing@"NotAvailable", _ :> op @@ #} &;
    {
     {h1, h2},
     Join @@ Reap[sow ~Scan~ Rest@data, h1, ff /@ Reap[Sow @@@ #2, h2][[2]] &][[2]]
    }
  ]

pivotTable仅依赖于pivotTableData

pivotTable[data_?MatrixQ] :=
 DynamicModule[{raw, t, header = data[[1]], opList =
    {Mean              -> "Mean of \[Rule]",
     Total             -> "Sum of \[Rule]",
     Length            -> "Count of \[Rule]",
     StandardDeviation -> "SD of \[Rule]",
     Min               -> "Min of \[Rule]",
     Max               -> "Max of \[Rule]"}},
  Manipulate[
   raw = pivotTableData[data, f1, f2, f3, op];
   t = ConstantArray["", Length /@ raw[[1]] + 2];
   t[[1, 1]] = Control[{op, opList}];
   t[[1, 3]] = Control[{f2, header}];
   t[[2, 1]] = Control[{f1, header}];
   t[[1, 2]] = Control[{f3, header}];
   {{t[[3 ;; -1, 1]], t[[2, 3 ;; -1]]}, t[[3 ;; -1, 3 ;; -1]]} = raw;
   TableView[N@t, Dividers -> All],
   Initialization :> {op = Mean, f1 = data[[1,1]], f2 = data[[1,2]], f3 = data[[1,3]]}
  ]
 ]

使用很简单:

pivotTable[data]

答案 1 :(得分:10)

快速而又脏的数据透视表可视化:

我将从一个更有趣的现实生活数据集开始:

data = ImportString[#, "TSV"][[1]] & /@ 
          Flatten[Import["http://lib.stat.cmu.edu/datasets/CPS_85_Wages"][[28 ;; -7]]
       ];

一些后期处理:

data =
  {
    data[[All, 1]],
    data[[All, 2]] /. {1 -> "South", 0 -> "Elsewhere"},
    data[[All, 3]] /. {1 -> "Female", 0 -> "Male"},
    data[[All, 4]],
    data[[All, 5]] /. {1 -> "Union Member", 0 -> "No member"},
    data[[All, 6]],
    data[[All, 7]],
    data[[All, 8]] /. {1 -> "Other", 2 -> "Hispanic", 3 -> "White"},
    data[[All, 9]] /. {1 -> "Management", 2 -> "Sales", 3 -> "Clerical", 
                      4 -> "Service", 5 -> "Professional", 6 -> "Other"},
    data[[All, 10]] /. {0 -> "Other", 1 -> "Manufacturing", 2 -> "Construction"},
    data[[All, 11]] /. {1 -> "Married", 0 -> "Unmarried"}
  }\[Transpose];

header = {"Education", "South", "Sex", "Experience", "Union", "Wage", 
          "Age", "Race", "Occupation", "Sector", "Marriatal status"};
MapIndexed[(headerNumber[#1] = #2[[1]]) &, header];
levelNames = Union /@ Transpose[data];
levelLength = Length /@ levelNames;

现在是真实的东西。它还使用What is in your Mathematica tool bag?

中定义的函数SelectEquivalents
pivotTableData[levelName1_, levelName2_, dependent_, op_] :=
 Table[
  SelectEquivalents[data,
    FinalFunction -> (If[Length[#] == 0, Missing["NotAvailable"], op[# // Flatten]] &),
    TagPattern -> 
        _?(#[[headerNumber[levelName1]]] == levelMember1 && 
           #[[headerNumber[levelName2]]] == levelMember2 &),
    TransformElement -> (#[[headerNumber[dependent]]] &)
   ],
   {levelMember1, levelNames[[headerNumber[levelName1]]]},
   {levelMember2, levelNames[[headerNumber[levelName2]]]}
 ]

DynamicModule[
 {opList = 
    {Mean ->"Mean of \[Rule]", Total ->"Sum of \[Rule]", Length ->"Count of \[Rule]",
     StandardDeviation -> "SD of \[Rule]", Min -> "Min of \[Rule]", 
     Max -> "Max of \[Rule]"
    }, t},
 Manipulate[
  t=Table["",{levelLength[[headerNumber[h1]]]+2},{levelLength[[headerNumber[h2]]]+2}];
  t[[3 ;; -1, 1]] = levelNames[[headerNumber[h1]]];
  t[[2, 3 ;; -1]] = levelNames[[headerNumber[h2]]];
  t[[1, 1]] = Control[{op, opList}];
  t[[1, 3]] = Control[{h2, header}];
  t[[2, 1]] = Control[{h1, header}];
  t[[1, 2]] = Control[{h3, header}];
  t[[3 ;; -1, 3 ;; -1]] = pivotTableData[h1, h2, h3, op] // N;
  TableView[t, Dividers -> All], 
  Initialization :> {op = Mean, h1 = "Sector", h2 = "Union", h3 = "Wage"}
  ]
 ]

enter image description here enter image description here enter image description here

还有一些工作要做。 DynamicModule应该变成一个完全独立的功能,标题内容更加精简,但这对于第一次展示应该足够了。

答案 2 :(得分:3)

使用http://www.wolfram.com/products/applications/excel_link/,这样你可以充分利用这两个方面。该产品在Excel和mma,2-way之间创建了完美的链接。

答案 3 :(得分:3)

@ Mr.Wizard的回答确实非常强大且持久,因为它适用于适用于Mathematica中某些地图缩减工作的ReapSow方法。由于MMA本身的发展,也考虑一个新的选择。

GroupBy (在 Mathematica v.10.0中引入)提供了 map reduce 操作的概括。

因此,上述data作业可能会如下实现(部分可读性过大):

headings = Union @ data[[All, #]] & /@ {1, 4}
  

{{“East”,“North”,“South”,“West”},{“01/2011”,“02/2011”,“03/2011”,      “04/2011”,“05/2011”,“06/2011”,“07/2011”,“08/2011”,“09/2011”,     “10/2011”,“11/2011”,“12/2011”}}

我们可以使用 Outer TableForm设置矩形模板:

template = Outer[List, Apply[Sequence][headings]];

GroupBy 总计作为第三个参数的主要工作:

pattern = Append[Normal @
 GroupBy[data, (#[[{1, 4}]] &) -> (#[[-1]] &), Total], 
 _ -> Null];

最后,将模式注入模板(并为美容应用TableForm标题):

TableForm[Replace[template, pattern, {2}], TableHeadings -> headings]

这会输出一些:

enter image description here

注意:我们在data中总计了最后一列。 (当然,许多其他聚合也是可能的。)

答案 4 :(得分:2)

这就是我想出的。它使用What is in your Mathematica tool bag?中定义的SelectEquivalents函数。 Function1和Function2意味着具有criteria1和criteria2的不同分组可能性。 FilterFunction用于根据标题名称在数据上定义任意过滤器公式。

使用Mr. Wizard的数据示例是此功能的一些用法。

criteria={"Region", "Gender", "Style", "Ship Date", "Units", "Price", "Cost"};
criteria1 = "Region";
criteria2 = "Ship Date";
consideredData = "Units";

PivotTable[data,criteria,criteria1,criteria2,consideredData]

一个简洁的例子

function2 = If[ToExpression@StringTake[#, 2] <= 6, "First Semester", "Second Semester"] &;
PivotTable[data,criteria,criteria1,criteria2,consideredData,FilterFunction->("Gender"=="Girl"&&"Units"*"Price"<=100&),Function2->function2]

这是函数的定义

keysToIndex[keys_] :=
   Module[{keyIndex},
      (keyIndex[#1] = #2[[1]])&~MapIndexed~keys;
      keyIndex
   ];

InverseFlatten[l_,dimensions_]:= Fold[Partition[#, #2] &, l, Most[Reverse[dimensions]]];

Options[PivotTable]={Function1->Identity,Function2->Identity,FilterFunction->(True &),AggregationFunction->Total,FormatOutput->True};

PivotTable[data_,criteria_,criteria1_,criteria2_,consideredData_,OptionsPattern[]]:=
    Module[{criteriaIndex, criteria1Index, criteria2Index, consideredDataIndex, criteria1Function, criteria2Function, filterFunctionTranslated, filteredResult, keys1, keys1Index, keys2, keys2Index, resultTable, function1, function2, filterFunction, aggregationFunction, formatOutput,p,sharp},

    function1 = OptionValue@Function1;
    function2 = OptionValue@Function2;
    filterFunction = OptionValue@FilterFunction;
    aggregationFunction = OptionValue@AggregationFunction;
    formatOutput=OptionValue@FormatOutput;  

    criteriaIndex=keysToIndex[criteria];

    criteria1Index=criteriaIndex@criteria1;
    criteria2Index=criteriaIndex@criteria2;
    consideredDataIndex=criteriaIndex@consideredData;

    criteria1Function=Composition[function1,#[[criteria1Index]]&];
    criteria2Function=Composition[function2,#[[criteria2Index]]&];
    filterFunctionTranslated = filterFunction/.(# -> p[sharp, criteriaIndex@#]& /@ criteria /. sharp -> #)/.p->Part;

    filteredResult=
        SelectEquivalents[
            data
            ,
            TagElement->({criteria1Function@#,criteria2Function@#,filterFunctionTranslated@#}&)
            ,
            TransformElement->(#[[consideredDataIndex]]&)
            ,
            TagPattern->_?(#[[3]]&)
            ,
            TransformResults->(Append[Most@#1,aggregationFunction@#2]&)
        ];

    If[formatOutput,
        keys1=filteredResult[[All,1]]//Union//Sort;
        keys2=filteredResult[[All,2]]//Union//Sort;
        resultTable=
           SelectEquivalents[
              filteredResult
              ,
              TagElement->(#[[{1,2}]]&)
              ,
              TransformElement->(#[[3]]&)
              ,
              TagPattern->Flatten[Outer[List, keys1, keys2], 1]
              ,
              FinalFunction-> (InverseFlatten[Flatten[#/.{}->Missing[]],{Length@keys1,Length@keys2}]&)
           ];

        TableForm[resultTable,TableHeadings->{keys1,keys2}]
        ,
        filteredResult
    ]
];

答案 5 :(得分:1)

我在比赛中很少。这是另一个包含对象形式的自包含解决方案。

使用@ Mr.Wizard创建的随机数据:

    key = # -> #2[[1]] & ~MapIndexed~
       {"Region", "Gender", "Style", "Ship Date", "Units", "Price", "Cost"};
choices = {
   {"North", "South", "East", "West"},
   {"Boy", "Girl"},
   {"Tee", "Golf", "Fancy"},
   IntegerString[#, 10, 2] <> "/2011" & /@ Range@12,
   Range@15,
   Range[8.00, 15.00, 0.01],
   Range[6.00, 14.00, 0.01]
   };
data = RandomChoice[#, 5000] & /@ choices // Transpose;

使用MapIndexedSparseArray作为关键功能,以下是代码:

Options[createPivotTable]={"RowColValueHeads"-> {1,2,3},"Function"-> Total};
createPivotTable[data_,opts:OptionsPattern[{createPivotTable}]]:=Module[{r,c,v,aggDataIndex,rowRule,colRule,pivot},

    {r,c,v}=OptionValue["RowColValueHeads"];

    pivot["Row"]= Union@data[[All,r]];
    pivot["Col"]= Union@data[[All,c]];

    rowRule= Dispatch[#->#2[[1]]&~MapIndexed~pivot["Row"]];
    colRule= Dispatch[#->#2[[1]]&~MapIndexed~pivot["Col"]];

    aggDataIndex={#[[1,r]]/.rowRule,#[[1,c]]/.colRule}->OptionValue["Function"]@#[[All,v]]&/@GatherBy[data,#[[{r,c}]]&];

    pivot["Data"]=Normal@SparseArray@aggDataIndex;
    pivot["Properties"]={"Data","Row","Col"};
    pivot["Table"]=TableForm[pivot["Data"], TableHeadings -> {pivot["Row"], pivot["Col"]}];
    Format[pivot]:="PivotObject";
    pivot
]

你可以用作:

pivot=createPivotTable[data,"RowColValueHeads"-> ({"Ship Date","Region","Units"}/.key)];
pivot["Table"]
pivot["Data"]
pivot["Row"]
pivot["Col"]

得到: enter image description here

我相信速度比@WhisWizard更快,但我必须做出更好的测试,现在没有时间。