可以使用哪些算法在控制台中绘制二叉树?树以C实现。例如,数字:2 3 4 5 8的BST将在控制台中显示为:
答案 0 :(得分:43)
代码:
int _print_t(tnode *tree, int is_left, int offset, int depth, char s[20][255])
{
char b[20];
int width = 5;
if (!tree) return 0;
sprintf(b, "(%03d)", tree->val);
int left = _print_t(tree->left, 1, offset, depth + 1, s);
int right = _print_t(tree->right, 0, offset + left + width, depth + 1, s);
#ifdef COMPACT
for (int i = 0; i < width; i++)
s[depth][offset + left + i] = b[i];
if (depth && is_left) {
for (int i = 0; i < width + right; i++)
s[depth - 1][offset + left + width/2 + i] = '-';
s[depth - 1][offset + left + width/2] = '.';
} else if (depth && !is_left) {
for (int i = 0; i < left + width; i++)
s[depth - 1][offset - width/2 + i] = '-';
s[depth - 1][offset + left + width/2] = '.';
}
#else
for (int i = 0; i < width; i++)
s[2 * depth][offset + left + i] = b[i];
if (depth && is_left) {
for (int i = 0; i < width + right; i++)
s[2 * depth - 1][offset + left + width/2 + i] = '-';
s[2 * depth - 1][offset + left + width/2] = '+';
s[2 * depth - 1][offset + left + width + right + width/2] = '+';
} else if (depth && !is_left) {
for (int i = 0; i < left + width; i++)
s[2 * depth - 1][offset - width/2 + i] = '-';
s[2 * depth - 1][offset + left + width/2] = '+';
s[2 * depth - 1][offset - width/2 - 1] = '+';
}
#endif
return left + width + right;
}
void print_t(tnode *tree)
{
char s[20][255];
for (int i = 0; i < 20; i++)
sprintf(s[i], "%80s", " ");
_print_t(tree, 0, 0, 0, s);
for (int i = 0; i < 20; i++)
printf("%s\n", s[i]);
}
输出:
.----------------------(006)-------.
.--(001)-------. .--(008)--.
.--(-02) .--(003)-------. (007) (009)
.-------(-06) (002) .--(005)
.--(-08)--. (004)
(-09) (-07)
或
(006)
+------------------------+---------+
(001) (008)
+----+---------+ +----+----+
(-02) (003) (007) (009)
+----+ +----+---------+
(-06) (002) (005)
+---------+ +----+
(-08) (004)
+----+----+
(-09) (-07)
答案 1 :(得分:39)
查看Printing Binary Trees in Ascii
来自下面的@AnyOneElse Pastbin:
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!Code originally from /http://www.openasthra.com/c-tidbits/printing-binary-trees-in-ascii/
!!! Just saved it, cause the website is down.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Printing Binary Trees in Ascii
Here we are not going to discuss what binary trees are (please refer this, if you are looking for binary search trees), or their operations but printing them in ascii.
The below routine prints tree in ascii for a given Tree representation which contains list of nodes, and node structure is this
struct Tree
{
Tree * left, * right;
int element;
};
This pic illustrates what the below routine does on canvas..
ascii tree
Here is the printing routine..
b5855d39a6b8a2735ddcaa04a404c125001
Auxiliary routines..
//This function prints the given level of the given tree, assuming
//that the node has the given x cordinate.
void print_level(asciinode *node, int x, int level)
{
int i, isleft;
if (node == NULL) return;
isleft = (node->parent_dir == -1);
if (level == 0)
{
for (i=0; i<(x-print_next-((node->lablen-isleft)/2)); i++)
{
printf(" ");
}
print_next += i;
printf("%s", node->label);
print_next += node->lablen;
}
else if (node->edge_length >= level)
{
if (node->left != NULL)
{
for (i=0; i<(x-print_next-(level)); i++)
{
printf(" ");
}
print_next += i;
printf("/");
print_next++;
}
if (node->right != NULL)
{
for (i=0; i<(x-print_next+(level)); i++)
{
printf(" ");
}
print_next += i;
printf("\\");
print_next++;
}
}
else
{
print_level(node->left,
x-node->edge_length-1,
level-node->edge_length-1);
print_level(node->right,
x+node->edge_length+1,
level-node->edge_length-1);
}
}
//This function fills in the edge_length and
//height fields of the specified tree
void compute_edge_lengths(asciinode *node)
{
int h, hmin, i, delta;
if (node == NULL) return;
compute_edge_lengths(node->left);
compute_edge_lengths(node->right);
/* first fill in the edge_length of node */
if (node->right == NULL && node->left == NULL)
{
node->edge_length = 0;
}
else
{
if (node->left != NULL)
{
for (i=0; i<node->left->height && i < MAX_HEIGHT; i++)
{
rprofile[i] = -INFINITY;
}
compute_rprofile(node->left, 0, 0);
hmin = node->left->height;
}
else
{
hmin = 0;
}
if (node->right != NULL)
{
for (i=0; i<node->right->height && i < MAX_HEIGHT; i++)
{
lprofile[i] = INFINITY;
}
compute_lprofile(node->right, 0, 0);
hmin = MIN(node->right->height, hmin);
}
else
{
hmin = 0;
}
delta = 4;
for (i=0; i<hmin; i++)
{
delta = MAX(delta, gap + 1 + rprofile[i] - lprofile[i]);
}
//If the node has two children of height 1, then we allow the
//two leaves to be within 1, instead of 2
if (((node->left != NULL && node->left->height == 1) ||
(node->right != NULL && node->right->height == 1))&&delta>4)
{
delta--;
}
node->edge_length = ((delta+1)/2) - 1;
}
//now fill in the height of node
h = 1;
if (node->left != NULL)
{
h = MAX(node->left->height + node->edge_length + 1, h);
}
if (node->right != NULL)
{
h = MAX(node->right->height + node->edge_length + 1, h);
}
node->height = h;
}
asciinode * build_ascii_tree_recursive(Tree * t)
{
asciinode * node;
if (t == NULL) return NULL;
node = malloc(sizeof(asciinode));
node->left = build_ascii_tree_recursive(t->left);
node->right = build_ascii_tree_recursive(t->right);
if (node->left != NULL)
{
node->left->parent_dir = -1;
}
if (node->right != NULL)
{
node->right->parent_dir = 1;
}
sprintf(node->label, "%d", t->element);
node->lablen = strlen(node->label);
return node;
}
//Copy the tree into the ascii node structre
asciinode * build_ascii_tree(Tree * t)
{
asciinode *node;
if (t == NULL) return NULL;
node = build_ascii_tree_recursive(t);
node->parent_dir = 0;
return node;
}
//Free all the nodes of the given tree
void free_ascii_tree(asciinode *node)
{
if (node == NULL) return;
free_ascii_tree(node->left);
free_ascii_tree(node->right);
free(node);
}
//The following function fills in the lprofile array for the given tree.
//It assumes that the center of the label of the root of this tree
//is located at a position (x,y). It assumes that the edge_length
//fields have been computed for this tree.
void compute_lprofile(asciinode *node, int x, int y)
{
int i, isleft;
if (node == NULL) return;
isleft = (node->parent_dir == -1);
lprofile[y] = MIN(lprofile[y], x-((node->lablen-isleft)/2));
if (node->left != NULL)
{
for (i=1; i <= node->edge_length && y+i < MAX_HEIGHT; i++)
{
lprofile[y+i] = MIN(lprofile[y+i], x-i);
}
}
compute_lprofile(node->left, x-node->edge_length-1, y+node->edge_length+1);
compute_lprofile(node->right, x+node->edge_length+1, y+node->edge_length+1);
}
void compute_rprofile(asciinode *node, int x, int y)
{
int i, notleft;
if (node == NULL) return;
notleft = (node->parent_dir != -1);
rprofile[y] = MAX(rprofile[y], x+((node->lablen-notleft)/2));
if (node->right != NULL)
{
for (i=1; i <= node->edge_length && y+i < MAX_HEIGHT; i++)
{
rprofile[y+i] = MAX(rprofile[y+i], x+i);
}
}
compute_rprofile(node->left, x-node->edge_length-1, y+node->edge_length+1);
compute_rprofile(node->right, x+node->edge_length+1, y+node->edge_length+1);
}
Here is the asciii tree structure…
struct asciinode_struct
{
asciinode * left, * right;
//length of the edge from this node to its children
int edge_length;
int height;
int lablen;
//-1=I am left, 0=I am root, 1=right
int parent_dir;
//max supported unit32 in dec, 10 digits max
char label[11];
};
输出:
2
/ \
/ \
/ \
1 3
/ \ / \
0 7 9 1
/ / \ / \
2 1 0 8 8
/
7
答案 2 :(得分:18)
一些提示:相同深度的节点之间的间距(例如,在您的示例中为2和4或3和8)是深度的函数。
每个打印的行由具有相同深度的所有节点组成,从最左边的节点打印到最右边的节点。
所以你需要一种方法,例如,根据它们的深度,按照它们最左边的顺序排列行数组中的节点。
从根节点开始,广度优先搜索将按深度和最左侧的顺序访问节点。
节点之间的间距可以通过找到树的最大高度,使用最深节点的一些恒定宽度,以及每个较小深度的宽度加倍来找到,因此任何深度的宽度=(1 + maxdepth - currentdepth )*深度宽度。
该数字为您提供任何特定深度的每个节点的打印“水平宽度”。
左侧节点在其父级宽度的左半部分水平定位,右半部分为右侧节点。你将为任何没有父母的节点插入虚拟间隔;更简单的方法是确保所有叶子与最深节点处于同一深度,并将空白作为其值。显然,您还必须补偿值的宽度,可能是通过使最大深度的宽度至少与最大值节点的打印(十进制表示,大概)一样宽。
答案 3 :(得分:11)
在数组中实现树时,还有一个需要:
#include <stdio.h>
#include <math.h>
#define PARENT(i) ((i-1) / 2)
#define NUM_NODES 15
#define LINE_WIDTH 70
int main() {
int tree[NUM_NODES]={0,1,2,3,4,5,6,7,8,9,1,2,3,4,5};
int print_pos[NUM_NODES];
int i, j, k, pos, x=1, level=0;
print_pos[0] = 0;
for(i=0,j=1; i<NUM_NODES; i++,j++) {
pos = print_pos[PARENT(i)] + (i%2?-1:1)*(LINE_WIDTH/(pow(2,level+1))+1);
for (k=0; k<pos-x; k++) printf("%c",i==0||i%2?' ':'-');
printf("%d",tree[i]);
print_pos[i] = x = pos+1;
if (j==pow(2,level)) {
printf("\n");
level++;
x = 1;
j = 0;
}
}
return 0;
}
输出:
0
1-----------------------------------2
3-----------------4 5-----------------6
7---------8 9---------1 2---------3 4---------5
答案 4 :(得分:8)
我在c ++中有这个小解决方案 - 它可以很容易地转换为c。
我的解决方案确实需要一个补充数据结构来存储树中当前节点的深度(这是因为如果您使用的是不完整的树,则给定子树的深度可能与整个树中的深度不一致。 )
#include <iostream>
#include <utility>
#include <algorithm>
#include <list>
namespace tree {
template<typename T>
struct node
{
T data;
node* l;
node* r;
node(T&& data_ = T()) : data(std::move(data_)), l(0), r(0) {}
};
template<typename T>
int max_depth(node<T>* n)
{
if (!n) return 0;
return 1 + std::max(max_depth(n->l), max_depth(n->r));
}
template<typename T>
void prt(node<T>* n)
{
struct node_depth
{
node<T>* n;
int lvl;
node_depth(node<T>* n_, int lvl_) : n(n_), lvl(lvl_) {}
};
int depth = max_depth(n);
char buf[1024];
int last_lvl = 0;
int offset = (1 << depth) - 1;
// using a queue means we perform a breadth first iteration through the tree
std::list<node_depth> q;
q.push_back(node_depth(n, last_lvl));
while (q.size())
{
const node_depth& nd = *q.begin();
// moving to a new level in the tree, output a new line and calculate new offset
if (last_lvl != nd.lvl)
{
std::cout << "\n";
last_lvl = nd.lvl;
offset = (1 << (depth - nd.lvl)) - 1;
}
// output <offset><data><offset>
if (nd.n)
sprintf(buf, " %*s%d%*s", offset, " ", nd.n->data, offset, " ");
else
sprintf(buf, " %*s", offset << 1, " ");
std::cout << buf;
if (nd.n)
{
q.push_back(node_depth(nd.n->l, last_lvl + 1));
q.push_back(node_depth(nd.n->r, last_lvl + 1));
}
q.pop_front();
}
std::cout << "\n";
}
}
int main()
{
typedef tree::node<int> node;
node* head = new node();
head->l = new node(1);
head->r = new node(2);
head->l->l = new node(3);
head->l->r = new node(4);
head->r->l = new node(5);
head->r->r = new node(6);
tree::prt(head);
return 0;
}
打印出以下内容:
0
1 2
3 4 5 6
答案 5 :(得分:3)
查看Linux中pstree命令的输出。 它不会以您想要的确切形式生成输出,但恕我直言,它更具可读性。
答案 6 :(得分:3)
我是第二个litb的推荐。我最近必须这样做才能打印Windows进程的VAD树,我使用DOT语言(只打印出二叉树行走功能中的节点):
http://en.wikipedia.org/wiki/DOT_language
例如,您的DOT文件将包含:
digraph graphname { 5 -> 3; 5 -> 8; 3 -> 4; 3 -> 2; }
使用dotty.exe生成图表或使用dot.exe将其转换为PNG。
答案 7 :(得分:2)
水平方向上非常简单的C ++解决方案打印树:
5
1
5
9
7
14
代码(Node::print()
函数才是重要的):
#include<iostream>
using namespace std;
class Tree;
class Node{
public:
Node(int val): _val(val){}
int val(){ return _val; }
void add(Node *temp)
{
if (temp->val() > _val)
{
if (_rchild)
_rchild->add(temp);
else
{
_rchild = temp;
}
}
else
{
if (_lchild)
_lchild->add(temp);
else
{
_lchild = temp;
}
}
}
void print()
{
for (int ix = 0; ix < _level; ++ix) cout << ' ';
cout << _val << endl;
++_level;
if (_lchild)
{
_lchild->print();
--_level;
}
if (_rchild)
{
_rchild->print();
--_level;
}
}
private:
int _val;
Node *_lchild;
Node *_rchild;
static int _level;
};
int Node::_level = 0;
class Tree{
public:
Tree(): _root(0){}
void add(int val)
{
Node *temp = new Node(val);
if (!_root)
_root = temp;
else
_root->add(temp);
}
void print()
{
if (!_root)
return;
_root->print();
}
private:
Node *_root;
};
int main()
{
Tree tree;
tree.add(5);
tree.add(9);
tree.add(1);
tree.add(7);
tree.add(5);
tree.add(14);
tree.print();
}
答案 8 :(得分:1)
我认为你不应该自己编写代码,但是看看Tree::Visualize这似乎是一个很好的Perl实现,具有不同的可能样式,并使用/端口算法之一。
答案 9 :(得分:1)
我有一个Ruby程序,用于计算应在此处绘制二叉树中每个节点的坐标:http://hectorcorrea.com/Blog/Drawing-a-Binary-Tree-in-Ruby
此代码使用非常基本的算法来计算坐标,而不是“区域效率”,但这是一个良好的开端。如果您想查看“实时”代码,可以在此处进行测试:http://binarytree.heroku.com/