我想找到一组中加权元素的所有可能组合,其权重之和完全等于给定的权重W
假设我想从{ 'A', 'B', 'C', 'D', 'E' }
和weights = {'A':2, 'B':1, 'C':3, 'D':2, 'E':1}
中选择k W = 4
中的k个元素。
然后这会产生:
('A','B','E')
('A','D')
('B','C')
('B','D','E')
('C','E')
我意识到蛮力的方式是找到给定集合的所有排列(用itertools.permutations
)并用加权和W拼接出前k个元素。但是我正在处理至少20个每套元素,这在计算上是昂贵的。
我认为使用背包的变体会有所帮助,只考虑重量(不是值),重量之和必须等于到W(不低于)。
我想在python中实现它,但任何cs理论提示都会有所帮助。优雅的奖励点!
答案 0 :(得分:3)
循环遍历所有 n !排列太昂贵了。而是生成所有2 ^ n 子集。
from itertools import chain, combinations
def weight(A):
return sum(weights[x] for x in A)
# Copied from example at http://docs.python.org/library/itertools.html
def powerset(iterable):
"powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
s = list(iterable)
return chain.from_iterable(combinations(s, r) for r in xrange(len(s) + 1))
[x for x in powerset({'A', 'B', 'C', 'D', 'E'}) if weight(x) == W]
产量
[('A', 'D'), ('C', 'B'), ('C', 'E'), ('A', 'B', 'E'), ('B', 'E', 'D')]
可以将列表理解的返回部分更改为tuple(sorted(x))
,或将list
中的powerset
调用替换为sorted
,将其转换为已排序的元组
答案 1 :(得分:1)
这些套装中的商品数量是否有上限?如果你这样做,并且它最多约为40,那么"meet-in-the-middle" algorithm中描述的Wikipedia page on Knapsack可能非常简单,并且复杂程度明显低于蛮力计算。
注意:使用比Python dict更高效的内存数据结构,这也适用于更大的集合。一个有效的实现应该可以轻松处理大小为60的集合。
以下是一个示例实现:
from collections import defaultdict
from itertools import chain, combinations, product
# taken from the docs of the itertools module
def powerset(iterable):
"powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
s = list(iterable)
return chain.from_iterable(combinations(s, r) for r in xrange(len(s) + 1))
def gen_sums(weights):
"""Given a set of weights, generate a sum --> subsets mapping.
For each posible sum, this will create a list of subsets of weights
with that sum.
>>> gen_sums({'A':1, 'B':1})
{0: [()], 1: [('A',), ('B',)], 2: [('A', 'B')]}
"""
sums = defaultdict(list)
for weight_items in powerset(weights.items()):
if not weight_items:
sums[0].append(())
else:
keys, weights = zip(*weight_items)
sums[sum(weights)].append(keys)
return dict(sums)
def meet_in_the_middle(weights, target_sum):
"""Find subsets of the given weights with the desired sum.
This uses a simplified meet-in-the-middle algorithm.
>>> weights = {'A':2, 'B':1, 'C':3, 'D':2, 'E':1}
>>> list(meet_in_the_middle(weights, 4))
[('B', 'E', 'D'), ('A', 'D'), ('A', 'B', 'E'), ('C', 'B'), ('C', 'E')]
"""
# split weights into two groups
weights_list = weights.items()
weights_set1 = dict(weights_list[:len(weights)//2])
weights_set2 = dict(weights_list[len(weights_set1):])
# generate sum --> subsets mapping for each group of weights,
# and sort the groups in descending order
set1_sums = sorted(gen_sums(set1).items())
set2_sums = sorted(gen_sums(set2).items(), reverse=True)
# run over the first sorted list, meanwhile going through the
# second list and looking for exact matches
set2_sums = iter(set2_sums)
try:
set2_sum, subsets2 = set2_sums.next()
for set1_sum, subsets1 in set1_sums:
set2_target_sum = target_sum - set1_sum
while set2_sum > set2_target_sum:
set2_sum, subsets2 = set2_sums.next()
if set2_sum == set2_target_sum:
for subset1, subset2 in product(subsets1, subsets2):
yield subset1 + subset2
except StopIteration: # done iterating over set2_sums
pass
答案 2 :(得分:0)
有效地执行此操作的技巧是使用前k个项创建具有相同权重的元素集。
从k = 0的空集开始,然后使用k-1的组合为k创建组合。除非您可以使用负权重,否则您可以修剪总重量大于W的组合。
以下是使用您的示例的方式:
梳子[k,w]是使用前k个元素具有总重量w的元素集合 支架用于套装。comb[0,0]={}
comb[1,0]={comb[0,0]}
comb[1,2]={comb[0,0]+'A'}
comb[2,0]={comb[1,0]}
comb[2,1]={comb[1,0]+'B'}
comb[2,2]={comb[1,2]}
comb[2,3]={comb[1,2]'B'}
comb[3,0]={comb[2,0]}
comb[3,1]={comb[2,1]}
comb[3,2]={comb[2,2]}
comb[3,3]={comb[2,3],comb[2,0]+'C'}
comb[3,4]={comb[2,3]+'C'}
comb[4,0]={comb[3,0]}
comb[4,1]={comb[3,1]}
comb[4,2]={comb[3,2],comb[3,0]+'D'}
comb[4,3]={comb[3,3],comb[3,1]+'D'}
comb[4,4]={comb[3,4],comb[3,2]+'D'}
comb[5,0]={comb[4,0]}
comb[5,1]={comb[4,1],comb[4,0]+'E'}
comb[5,2]={comb[4,2],comb[4,1]+'E'}
comb[5,3]={comb[4,3],comb[4,2]+'E'}
comb[5,4]={comb[4,4],comb[4,3]+'E'}
答案是梳[5,4],简化为:
{
{{'B'}+'C'},
{{'A'}+'D'},
{
{{'A'}+'B'},
{'C'},
{'B'}+'D'
}+'E'
}
给予所有组合。