我很难理解线性分区问题的动态编程解决方案。我正在阅读Algorithm Design Manual,问题在8.5节中描述。我已经无数次阅读了这个部分,但我只是没有得到它。我认为这是一个糟糕的解释(我现在读到的内容已经好多了),但是我还没有能够很好地理解这个问题以寻找替代解释。欢迎链接到更好的解释!
我找到了一个与该书类似的文章页面(可能来自本书的第一版):The Partition Problem。
第一个问题:在本书的示例中,分区从最小到最大排序。这只是巧合吗?从我所看到的,元素的排序对算法来说并不重要。
这是我对递归的理解:
让我们使用以下序列并将其分为4:
{S1...Sn} = 100 150 200 250 300 350 400 450 500
k = 4
第二个问题:这就是我认为递归将如何开始 - 我理解正确吗?
第一次递归是:
100 150 200 250 300 350 400 450 | 500 //3 partition to go
100 150 200 250 300 350 400 | 450 | 500 //2 partition to go
100 150 200 250 300 350 | 400 | 450 | 500 //1 partition to go
100 150 200 250 300 | 350 | 400 | 450 | 500 //done
第二次递归是:
100 150 200 250 300 350 400 450 | 500 //3 partition to go
100 150 200 250 300 350 400 | 450 | 500 //2 partition to go
100 150 200 250 300 350 | 400 | 450 | 500 //1 partition to go
100 150 200 250 | 300 350 | 400 | 450 | 500 //done
第三次递归是:
100 150 200 250 300 350 400 450 | 500 //3 partition to go
100 150 200 250 300 350 400 | 450 | 500 //2 partition to go
100 150 200 250 300 350 | 400 | 450 | 500 //1 partition to go
100 150 200 | 250 300 350 | 400 | 450 | 500 //done
第四次递归是:
100 150 200 250 300 350 400 450 | 500 //3 partition to go
100 150 200 250 300 350 400 | 450 | 500 //2 partition to go
100 150 200 250 300 350 | 400 | 450 | 500 //1 partition to go
100 150 | 200 250 300 350 | 400 | 450 | 500 //done
第五次递归是:
100 150 200 250 300 350 400 450 | 500 //3 partition to go
100 150 200 250 300 350 400 | 450 | 500 //2 partition to go
100 150 200 250 300 350 | 400 | 450 | 500 //1 partition to go
100 | 150 200 250 300 350 | 400 | 450 | 500 //done
第6次递归是:
100 150 200 250 300 350 400 450 | 500 //3 partition to go
100 150 200 250 300 350 400 | 450 | 500 //2 partition to go
100 150 200 250 300 | 350 400 | 450 | 500 //1 partition to go
100 150 200 250 | 300 | 350 400 | 450 | 500 //done
第7次递归是:
100 150 200 250 300 350 400 450 | 500 //3 partition to go
100 150 200 250 300 350 400 | 450 | 500 //2 partition to go
100 150 200 250 300 | 350 400 | 450 | 500 //1 partition to go
100 150 200 | 250 300 | 350 400 | 450 | 500 //done
第8次递归是:
100 150 200 250 300 350 400 450 | 500 //3 partition to go
100 150 200 250 300 350 400 | 450 | 500 //2 partition to go
100 150 200 250 300 | 350 400 | 450 | 500 //1 partition to go
100 150 | 200 250 300 | 350 400 | 450 | 500 //done
第9次递归是:
100 150 200 250 300 350 400 450 | 500 //3 partition to go
100 150 200 250 300 350 400 | 450 | 500 //2 partition to go
100 150 200 250 300 | 350 400 | 450 | 500 //1 partition to go
100 | 150 200 250 300 | 350 400 | 450 | 500 //done
等...
以下是书中出现的代码:
partition(int s[], int n, int k)
{
int m[MAXN+1][MAXK+1]; /* DP table for values */
int d[MAXN+1][MAXK+1]; /* DP table for dividers */
int p[MAXN+1]; /* prefix sums array */
int cost; /* test split cost */
int i,j,x; /* counters */
p[0] = 0; /* construct prefix sums */
for (i=1; i<=n; i++) p[i]=p[i-1]+s[i];
for (i=1; i<=n; i++) m[i][3] = p[i]; /* initialize boundaries */
for (j=1; j<=k; j++) m[1][j] = s[1];
for (i=2; i<=n; i++) /* evaluate main recurrence */
for (j=2; j<=k; j++) {
m[i][j] = MAXINT;
for (x=1; x<=(i-1); x++) {
cost = max(m[x][j-1], p[i]-p[x]);
if (m[i][j] > cost) {
m[i][j] = cost;
d[i][j] = x;
}
}
}
reconstruct_partition(s,d,n,k); /* print book partition */
}
关于算法的问题:
m
和d
?答案 0 :(得分:35)
请注意书中对算法的解释存在一个小错误,请在errata中查找文本“(*)Page 297”。
关于您的问题:
reconstruct_partition
程序,使用图8.8中最右边的表格作为指南修改强>
这是我对线性分区算法的实现。它基于Skiena的算法,但是以pythonic的方式;并返回分区列表。
from operator import itemgetter
def linear_partition(seq, k):
if k <= 0:
return []
n = len(seq) - 1
if k > n:
return map(lambda x: [x], seq)
table, solution = linear_partition_table(seq, k)
k, ans = k-2, []
while k >= 0:
ans = [[seq[i] for i in xrange(solution[n-1][k]+1, n+1)]] + ans
n, k = solution[n-1][k], k-1
return [[seq[i] for i in xrange(0, n+1)]] + ans
def linear_partition_table(seq, k):
n = len(seq)
table = [[0] * k for x in xrange(n)]
solution = [[0] * (k-1) for x in xrange(n-1)]
for i in xrange(n):
table[i][0] = seq[i] + (table[i-1][0] if i else 0)
for j in xrange(k):
table[0][j] = seq[0]
for i in xrange(1, n):
for j in xrange(1, k):
table[i][j], solution[i-1][j-1] = min(
((max(table[x][j-1], table[i][0]-table[x][0]), x) for x in xrange(i)),
key=itemgetter(0))
return (table, solution)
答案 1 :(得分:3)
我在PHP上实现了ÓscarLópez算法。请随时使用。
/**
* Example: linear_partition([9,2,6,3,8,5,8,1,7,3,4], 3) => [[9,2,6,3],[8,5,8],[1,7,3,4]]
* @param array $seq
* @param int $k
* @return array
*/
protected function linear_partition(array $seq, $k)
{
if ($k <= 0) {
return array();
}
$n = count($seq) - 1;
if ($k > $n) {
return array_map(function ($x) {
return array($x);
}, $seq);
}
list($table, $solution) = $this->linear_partition_table($seq, $k);
$k = $k - 2;
$ans = array();
while ($k >= 0) {
$ans = array_merge(array(array_slice($seq, $solution[$n - 1][$k] + 1, $n - $solution[$n - 1][$k])), $ans);
$n = $solution[$n - 1][$k];
$k = $k - 1;
}
return array_merge(array(array_slice($seq, 0, $n + 1)), $ans);
}
protected function linear_partition_table($seq, $k)
{
$n = count($seq);
$table = array_fill(0, $n, array_fill(0, $k, 0));
$solution = array_fill(0, $n - 1, array_fill(0, $k - 1, 0));
for ($i = 0; $i < $n; $i++) {
$table[$i][0] = $seq[$i] + ($i ? $table[$i - 1][0] : 0);
}
for ($j = 0; $j < $k; $j++) {
$table[0][$j] = $seq[0];
}
for ($i = 1; $i < $n; $i++) {
for ($j = 1; $j < $k; $j++) {
$current_min = null;
$minx = PHP_INT_MAX;
for ($x = 0; $x < $i; $x++) {
$cost = max($table[$x][$j - 1], $table[$i][0] - $table[$x][0]);
if ($current_min === null || $cost < $current_min) {
$current_min = $cost;
$minx = $x;
}
}
$table[$i][$j] = $current_min;
$solution[$i - 1][$j - 1] = $minx;
}
}
return array($table, $solution);
}
答案 2 :(得分:1)
以下是python中Skienna线性分割算法的改进实现,除了答案本身之外,该算法不计算最后k个列值:M [N] [K](单元格计算仅取决于前一个)>
针对输入{1,2,3,4,5,6,7,8,9}(在本书的Skienna示例中使用)进行测试,得出的矩阵M略有不同(经过上述修改),但正确返回最终结果(在此示例中,将s最小成本划分为k个范围是17,并且矩阵D用于打印导致该最优值的分频器位置列表)。
import math
def partition(s, k):
# compute prefix sums
n = len(s)
p = [0 for _ in range(n)]
m = [[0 for _ in range(k)] for _ in range(n)]
d = [[0 for _ in range(k)] for _ in range(n)]
for i in range(n):
p[i] = p[i-1] + s[i]
# initialize boundary conditions
for i in range(n):
m[i][0] = p[i]
for i in range(k):
m[0][i] = s[0]
# Evaluate main recurrence
for i in range(1, n):
"""
omit calculating the last M's column cells
except for the sought minimum cost M[N][K]
"""
if i != n - 1:
jlen = k - 1
else:
jlen = k
for j in range(1, jlen):
"""
- computes the minimum-cost partitioning of the set {S1,S2,.., Si} into j partitions .
- this part should be investigated more closely .
"""
#
m[i][j] = math.inf
# This loop needs to be traced to understand it better
for x in range(i):
sup = max(m[x][j-1], p[i] - p[x])
if m[i][j] > sup:
m[i][j] = sup
# record which divider position was required to achieve the value s
d[i][j] = x+1
return s, d, n, k
def reconstruct_partition(S, D, N, K):
if K == 0:
for i in range(N):
print(S[i], end="_")
print(" | ", end="")
else:
reconstruct_partition(S, D, D[N-1][K-1], K-1)
for i in range(D[N-1][K-1], N):
print(S[i], end="_")
print(" | ", end="")
# MAIN PROGRAM
S, D, N, K = partition([1, 2, 3, 4, 5, 6, 7, 8, 9], 3)
reconstruct_partition(S, D, N, K)