我在最佳二叉搜索树上进行了分配,并且在执行此操作时出现了一些问题。我发现许多在线链接很有帮助(仅限Google搜索),但我想知道......
为什么必须对键进行初始排序?
如果在未对键进行排序时获得较低的成本(对于最佳BST),这是否意味着我的代码中必定存在错误?
最佳BST必须完整/完美吗? (使用完整和完美的维基百科定义)
完美的二叉树是一个完整的二叉树,其中所有叶子处于相同的深度或相同的水平。 [1](这也模糊地称为完整的二叉树。)
完整的二叉树是一个二叉树,其中除了可能是最后一个级别之外,每个级别都被完全填充,并且所有节点都尽可能地离开。 [2]
对于最后一个问题,我认为最佳树必须是完整/完美的,但在线的一些小程序让我相信不然。我无法理解为什么......
答案 0 :(得分:1)
为什么必须对键进行初始排序?
他们没有。实际上,除非你使用自平衡树,否则最好是以随机顺序将键添加到树中,因为树最终会更平衡。
如果在未对键进行排序时获得较低的成本(对于最佳BST),这是否意味着我的代码中必定存在错误?
除非您编写自平衡树(您的自平衡算法不起作用),否则不会。
最佳BST必须完整/完美吗?
是。为了尽可能快地搜索给定树,所有树的节点必须均匀分布;即树必须尽可能短。
答案 1 :(得分:0)
void OptimalBinsearchtree_output(float R[21][20],int i, int j, int r1, char *dir)
{
int t;
if (i <= j)
{
t =(int)R[i][j];
fprintf(wp,"%s is %s child of %s\n", name[t], dir, name[r1]);
OptimalBinsearchtree_output(R,i, t - 1, t, "left");
OptimalBinsearchtree_output(R,t + 1, j, t, "right");
}
}
void OptimalBinarySearchTree(int n, const float p[],float *minavg)
{
int i, j, k, diagonal,l,pos;
float R[21][20];
float min = 0;
float A[21][20],sum=0;
printf("\n");
for (i = 1; i <=n; i++)
{
A[i][i - 1] = 0;
R[i][i - 1] = 0;
A[i][i] = p[i];
R[i][i] = i;
fprintf(wp,"A[%d][%d]=%4f\tA[%d][%d]=%4f\t",i,i-1,A[i][i-1],i,i,A[i][i]);
fprintf(wp,"R[%d][%d]=%4f\tR[%d][%d]=%4f\n", i, i - 1, R[i][i - 1], i, i, R[i][i]);
}
A[n+1][n] = 0;
R[n+1][n] = 0;
for (diagonal = 1; diagonal <= n - 1; diagonal++)
{
for (i = 1; i <= n - diagonal; i++)
{
min = 0;
sum = 0;
j = i + diagonal;
for (l = i; l <=j; l++)
{
sum = sum + p[l];
}
A[i][j] = sum;
for (k = i; k <= j; k++)
{
sum = A[i][k - 1] + A[k + 1][j];
if (min == 0)
{
min = sum;
pos = k;
}
else if (sum<min)
{
min = sum;
pos = k;
}
}
A[i][j] += min;
R[i][j] = pos;
}
}
*minavg = A[1][n];
printf("\n");
for (i = 1; i <= n; i++)
{
for (j = 0; j <= n; j++)
{
printf("%0.3f ", R[i][j]);
}
printf("\n");
}
for (i = 1; i <= n; i++)
{
for (j = 0; j <= n; j++)
{
printf("%0.3f ", A[i][j]);
}
printf("\n");
}
fprintf(wp,"\n\n");
fprintf(wp,"%s is the root of the tree\n",name[(int)R[1][n]]);
int r1 = (int)R[1][n];
OptimalBinsearchtree_output(R,1, r1 - 1, r1, "left");
OptimalBinsearchtree_output(R,r1 + 1, n, r1, "right");
}
void removeall()
{
nodeptr node,temp;
node = head;
while (node->next != NULL)
{
temp = node;
node = node->next;
}
if (node == node->next)
{
node->next = NULL;
temp->next = NULL;
free(node);
return;
}
node->next = NULL;
temp->next = NULL;
free(node);
}
void print()
{
nodeptr curr = NULL, temp = NULL;
curr = head;
gl_index = 1;
while (curr != NULL)
{
curr->index = gl_index;
gl_p[gl_index] = curr->val;
strcpy(name[gl_index], curr->str);
gl_index++;
wp=fopen("Output.txt","w+");
fprintf(wp,"%s\t%f\t%d\n", curr->str, curr->val, curr->index);
curr = curr->next;
}
}
void generatenode()
{
int i, j;
nodeptr temp = NULL;
char a[20];
while (!feof(fp))
{
nodeptr curr = NULL, prev = NULL;
temp = (struct node*)malloc(sizeof(struct node));
fscanf(fp, "%s", &temp->str);
fgets(a, 20, fp);
temp->index = gl_index;
b = atof(a);
int flag = 0;
temp->val = b;
gl_p[gl_index] = temp->val;
gl_index++;
temp->next = NULL;
if (head == NULL)
{
head = temp;
curr = head;
}
else
{
curr = head;
while (!(strcmp(temp->str, curr->str) < 0))
{
if(curr->next==NULL)
{
curr->next = temp;
curr = curr->next;
temp->next = NULL;
flag = 0;
break;
}
else
{
flag = 1;
prev = curr;
curr = curr->next;
}
}
if (curr == head)
{
temp->next = curr;
head = temp;
}
else
{
if (flag == 1)
{
prev->next = temp;
temp->next = curr;
}
}
flag = 0;
}
}
}