我需要对来自水文地质现场工作的大型数据集进行一些分析。我正在使用NumPy。我想知道我怎么做:
乘以例如我的数组的第二列用数字(例如5.2)。然后
计算该列中数字的累积总和。
正如我所提到的,我只想处理特定列而不是整个数组。
答案 0 :(得分:26)
you can do this in two simple steps using NumPy:
>>> # multiply column 2 of the 2D array, A, by 5.2
>>> A[:,1] *= 5.2
>>> # assuming by 'cumulative sum' you meant the 'reduced' sum:
>>> A[:,1].sum()
>>> # if in fact you want the cumulative sum (ie, returns a new column)
>>> # then do this for the second step instead:
>>> NP.cumsum(A[:,1])
有一些模拟数据:
>>> A = NP.random.rand(8, 5)
>>> A
array([[ 0.893, 0.824, 0.438, 0.284, 0.892],
[ 0.534, 0.11 , 0.409, 0.555, 0.96 ],
[ 0.671, 0.817, 0.636, 0.522, 0.867],
[ 0.752, 0.688, 0.142, 0.793, 0.716],
[ 0.276, 0.818, 0.904, 0.767, 0.443],
[ 0.57 , 0.159, 0.144, 0.439, 0.747],
[ 0.705, 0.793, 0.575, 0.507, 0.956],
[ 0.322, 0.713, 0.963, 0.037, 0.509]])
>>> A[:,1] *= 5.2
>>> A
array([[ 0.893, 4.287, 0.438, 0.284, 0.892],
[ 0.534, 0.571, 0.409, 0.555, 0.96 ],
[ 0.671, 4.25 , 0.636, 0.522, 0.867],
[ 0.752, 3.576, 0.142, 0.793, 0.716],
[ 0.276, 4.255, 0.904, 0.767, 0.443],
[ 0.57 , 0.827, 0.144, 0.439, 0.747],
[ 0.705, 4.122, 0.575, 0.507, 0.956],
[ 0.322, 3.71 , 0.963, 0.037, 0.509]])
>>> A[:,1].sum()
25.596156138451427
在NumPy中只需要一些简单的规则来进行元素选择(索引):
与Python一样,NumPy是基于0的,所以例如,下面的“1”指的是第二列
逗号分隔括号内的尺寸,因此[行,列],例如A [2,3]表示第3行第4列的项目(“单元格”)
冒号表示沿该维度的所有元素,例如,A [:,1]创建A列2的视图; A [3,:]指的是第四行
答案 1 :(得分:5)
不确定
import numpy as np
# Let a be some 2d array; here we just use dummy data
# to illustrate the method
a = np.ones((10,5))
# Multiply just the 2nd column by 5.2 in-place
a[:,1] *= 5.2
# Now get the cumulative sum of just that column
csum = np.cumsum(a[:,1])
如果您不想就地执行此操作,则需要采用略有不同的策略:
b = 5.2*a[:,1]
csum = np.cumsum(b)
答案 2 :(得分:0)
要将常数与特定的列或行相乘:
import numpy as np;
X=np.ones(shape=(10,10),dtype=np.float64);
X;
### this is our default matrix
array([[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]])
## now say we want to multiple it with 10
X=X*10;
array([[10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
[10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
[10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
[10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
[10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
[10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
[10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
[10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
[10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
[10., 10., 10., 10., 10., 10., 10., 10., 10., 10.]])
### Now if, we want to mulitply 3,5, 7 column with 5
X[:,[3,5,7]]=X[:,[3,5,7]]*5
array([[10., 10., 10., 50., 10., 50., 10., 50., 10., 10.],
[10., 10., 10., 50., 10., 50., 10., 50., 10., 10.],
[10., 10., 10., 50., 10., 50., 10., 50., 10., 10.],
[10., 10., 10., 50., 10., 50., 10., 50., 10., 10.],
[10., 10., 10., 50., 10., 50., 10., 50., 10., 10.],
[10., 10., 10., 50., 10., 50., 10., 50., 10., 10.],
[10., 10., 10., 50., 10., 50., 10., 50., 10., 10.],
[10., 10., 10., 50., 10., 50., 10., 50., 10., 10.],
[10., 10., 10., 50., 10., 50., 10., 50., 10., 10.],
[10., 10., 10., 50., 10., 50., 10., 50., 10., 10.]])
类似地,我们可以对任何列执行此操作。 希望能弄清楚。