在python中有效投影二分图(使用networkx)

时间:2011-09-20 13:42:06

标签: python performance loops python-3.x networkx

使用networkx模块,我在Python 3.2下进行一些网络分析,我需要在其中投射一个二分图(链接到其单元的囚犯:下面代码中的输入图B)到子图(将囚犯彼此联系起来)如果两个都在同一个单元格中有重叠拼写:使用定义图形B的囚犯节点的集合节点的输入,生成输出图形G)。我不需要特殊的算法来提出任何或最佳匹配,我只需要收集满足某些条件的所有链接。因此,我找到的其他SO帖子并不真正适用。但是:

当我提供越来越多的数据时,我当前的代码正在爆炸(RAM-,交换和CPU)。如果您看到使用5层循环简化下面的代码的方法,请告诉我。我不确定是否需要了解networkx,或者我的边缘属性标签的细节是相关的。谢谢!

def time_overlap_projected_graph_parallel(B, nodes):
    G=nx.MultiGraph()
    G.add_nodes_from((n,B.node[n]) for n in nodes)
    for u in nodes:
        unbrs = set(B[u])
        nbrs2 = set((n for nbr in unbrs for n in B[nbr])) - set([u])
        for v in nbrs2:
            for mutual_cell in set(B[u]) & set(B[v]):
                for uspell in B.get_edge_data(u,mutual_cell).values():
                    ustart = uspell[1]
                    uend = uspell[2]
                    for vspell in B.get_edge_data(v,mutual_cell).values():
                        vstart = vspell[1]
                        vend = vspell[2]
                        if uend > vstart and vend > ustart:
                            ostart = max(ustart,vstart)
                            oend = min(uend,vend)
                            olen = (oend-ostart+1)/86400
                            ocell = mutual_cell
                            if (v not in G[u] or ostart not in [ edict[1] for edict in G[u][v].values() ]):
                                G.add_edges_from([(u,v,{0: olen,1: ostart,2: oend,3: ocell})])
    return G

4 个答案:

答案 0 :(得分:2)

我猜可以使用二分图。像

import networkx as nx
from networkx.algorithms import bipartite

B.add_nodes_from(inmates_list, bipartite=0)
B.add_nodes_from(cells_list, bipartite=1)

inmates = set(n for n,d in B.nodes(data=True) if d['bipartite']==0)
cells = = set(B) - inmates
G = bipartite.projected_graph(B, inmates)

http://networkx.lanl.gov/reference/algorithms.bipartite.html

答案 1 :(得分:1)

这是我的看法。根据每个细胞的平均囚犯,它可能会提高性能。如果您有更好的方法来获取单元格(例如节点属性?),请替换

cells = [n for n in B.nodes() if n[0] not in nodes]

有了(这里我假设节点是所有囚犯的名单)。

from itertools import combinations

def time_overlap_projected_graph_parallel(B, nodes):
    G=nx.MultiGraph()
    G.add_nodes_from((n,B.node[n]) for n in nodes)
    cells = [n for n in B.nodes() if n[0] not in nodes]
    for cell in cells:
        for u,v in combinations(B[cell],2):
            for uspell in B.get_edge_data(u,cell).values():
                ustart = uspell[1]
                uend = uspell[2]
                for vspell in B.get_edge_data(v,cell).values():
                    vstart = vspell[1]
                    vend = vspell[2]
                    if uend > vstart and vend > ustart:
                        ostart = max(ustart,vstart)
                        oend = min(uend,vend)
                        olen = (oend-ostart+1)/86400
                        ocell = cell
                        if (v not in G[u] or ostart not in [ edict[1] for edict in G[u][v].values() ]):
                            G.add_edge(u,v,{0: olen,1: ostart,2: oend,3: ocell})
    return G

答案 2 :(得分:1)

我发布这个答案是为了提出一些改进建议。我假设您的二分图不是多图,而是正常nx.Graph。我将B更改为bi并将G更改为uni,因为大写名称是按惯例保留给类的。顺便问一下,如果法术开始并在同一时间结束怎么办?

def time_overlap_projected_graph_parallel(bi, nodes):
    uni = nx.MultiGraph()
    for u in nodes: #inmate
        uni.add_node(u) # do this to prevent iterating nodes twice
        u_adj = bi.adj[u] # bi.adj is a dict of dicts
        for (w, uw_attr) in u_adj.iteritems(): # cell
            w_adj = bi.adj[w]
            for (v, wv_attr) in w_adj.iteritems():#cellmate
                if v == u:
                    continue
                elif uni.has_edge(u, v): # avoid computing twice
                    continue
                for uspell in uw_attr.itervalues():
                    ustart = uspell[1]
                    uend = uspell[2]
                    for vspell in wv_attr.itervalues():
                        vstart = vspell[1]
                        vend = vspell[2]
                        if uend > vstart and vend > ustart:
                            ostart = max(ustart, vstart)
                            oend = min(uend, vend)
                            olen = (oend - ostart + 1) / 86400 # this assumes floats or Python 3 otherwise will be 0
                            ocell = w
                            # I would change this to uni.add_edge(u, v, length=olen, start=ostart, end=oend, cell=ocell)
                            # or to uni.add_edge(u, v, spell=[olen, ostart, oend, ocell])
                            uni.add_edge(u, v, **{0: olen, 1: ostart, 2: oend, 3: ocell})
    return uni

答案 3 :(得分:0)

考虑修改后的代码,它可能会做同样的事情,但是使用迭代器(虽然我还修改了一些与网络x相关的函数/方法调用---但我仍然在检查我是否破坏了某些内容):

def time_overlap_projected_graph_parallel(B, nodes):
    G=nx.MultiGraph()
    G.add_nodes_from(nodes)
    for u in G.nodes_iter():#inmate
        for w in B.neighbors_iter(u):#cell
            for v in B.neighbors_iter(w):#cellmate
                if v == u:
                    continue
                for uspell in B[u][w].values():
                    ustart = uspell[1]
                    uend = uspell[2]
                    for vspell in B[v][w].values():
                        vstart = vspell[1]
                        vend = vspell[2]
                        if uend > vstart and vend > ustart:
                            ostart = max(ustart,vstart)
                            oend = min(uend,vend)
                            olen = (oend-ostart+1)/86400
                            ocell = w
                            if (v not in G[u] or ostart not in [ edict[1] for edict in G[u][v].values() ]):
                                G.add_edges_from([(u,v,{0: olen,1: ostart,2: oend,3: ocell})])
    return G