我使用这段代码使用 networkX 绘制二分图:
import networkx as nx
G = bipartite.from_biadjacency_matrix(a_matrix, create_using=None, edge_attribute='weight')
X, Y = bipartite.sets(G)
pos = dict()
pos.update((n, (0, i*10)) for i, n in enumerate(X))
pos.update((n, (0.5, i*10)) for i, n in enumerate(Y))
nx.draw(G, pos=pos)
有没有办法随机更改它们之间不同节点和边的颜色?
答案 0 :(得分:2)
生成一些随机数:
edge_color=np.random.random(num_edges)
node_color=np.random.random(num_nodes)
并设置边缘颜色贴图:
edge_cmap=plt.get_cmap('Blues')
和节点颜色映射:
cmap=plt.get_cmap('Reds')
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
from networkx.algorithms import bipartite
import scipy.sparse as sparse
a_matrix = sparse.rand(10, 10, format='coo', density=0.8)
G = bipartite.from_biadjacency_matrix(a_matrix, create_using=None,
edge_attribute='weight')
X, Y = bipartite.sets(G)
pos = dict()
pos.update((n, (0, i*10)) for i, n in enumerate(X))
pos.update((n, (0.5, i*10)) for i, n in enumerate(Y))
num_edges = G.number_of_edges()
num_nodes = G.number_of_nodes()
nx.draw(G, pos=pos, with_labels=True,
edge_color=np.random.random(num_edges),
edge_cmap=plt.get_cmap('Blues'),
node_color=np.random.random(num_nodes),
cmap=plt.get_cmap('Reds'))
plt.show()
答案 1 :(得分:0)
您可以使用子图为连接的节点着色:
C = nx.connected_component_subgraphs(G)
for g in C:
node_colors = [random.random()] * nx.number_of_nodes(g)
nx.draw(g, pos, node_size=40, node_color=node_colors, vmin=0.0, vmax=1.0, with_labels=False )