重复应用函数直到结果稳定

时间:2011-09-16 09:48:38

标签: function haskell repeat higher-order-functions

我想重复应用函数simplify',直到结果为“稳定”(即simplify'(x) == x):

simplify :: Expr -> Expr
simplify expr =
    let iterations = iterate simplify' expr
        neighbours = zip iterations (tail iterations)
        simplified = takeWhile (\(a, b) -> a /= b) neighbours
    in  snd $ last ((expr, expr) : simplified)

simplify' :: Expr -> Expr

这似乎是我常见的问题。有更优雅的解决方案吗?

更新:我找到了一个更简单的解决方案,但我仍然在寻找更优雅的解决方案:)

simplify expr =
    let next = simplify' expr
    in  if next == expr
        then expr
        else simplify next

5 个答案:

答案 0 :(得分:18)

这是通过简单的模式匹配和递归实现的轻微概括。 converge搜索无限列表,查找一行中满足某些谓词的两个元素。然后它返回第二个。

converge :: (a -> a -> Bool) -> [a] -> a
converge p (x:ys@(y:_))
    | p x y     = y
    | otherwise = converge p ys

simplify = converge (==) . iterate simplify'

这使得例如使用近似相等来收敛测试变得容易。

sqrt x = converge (\x y -> abs (x - y) < 0.001) $ iterate sqrt' x
    where sqrt' y = y - (y^2 - x) / (2*y) 

答案 1 :(得分:17)

https://stackoverflow.com/a/7448190/1687259代码的简化将是:

converge :: Eq a => (a -> a) -> a -> a
converge = until =<< ((==) =<<)

功能不会改变。该函数被传递给((==) >>=),它从收敛和稍后给出参数(简化),直到意味着在每次迭代中它将检查是否将当前a应用于f(f a == a)

答案 2 :(得分:9)

simplify = until (\x -> simplify' x == x) simplify'

until是一个鲜为人知的Prelude函数。 (一个小缺点是它使用simplify'大约2n次而不是大约n。)

但是,我认为最明确的方法是修改您的版本以使用警卫,其中:

simplify x | x == y    = x
           | otherwise = simplify y
           where y = simplify' x

另一种方式:

until' :: (a -> Maybe a) -> a -> a
until' f x = maybe x (until' f) (f x)

simplify :: Integer -> Integer
simplify = until' $ \x -> let y = simplify' x in
                           if x==y then Nothing else Just y

答案 3 :(得分:1)

import Data.List.HT (groupBy)

fst_stable = head . (!!1) . groupBy (/=)
-- x, f(x), f^2(x), etc.
mk_lst f x = let lst = x : (map f lst) in lst
iter f = fst_stable . mk_lst f

test1 = iter (+1) 1 -- doesn't terminate
test2 = iter id 1 -- returns 1
test3 = iter (`div` 2) 4 -- returns 0

答案 4 :(得分:0)

以下是可以使用的一种此类实现:

applyTill :: (a -> bool) -> (a -> a) -> a -> a
applyTill p f initial = head $ filter p $ scanl (\s e -> f s) initial [1..]

使用示例:

applyTill ( (==) stableExpr ) simplify' initExpr