这是我在python中的第一个程序,因此在我的程序中可能存在“有趣”的东西。该程序从它在给定目录中找到的文件中读取3列。然后计算每个文件的直方图,并将结果添加到二维矩阵中,以创建类似2D-Hist的内容。
我的困难在于我的第三个图,我希望y轴数据处于对数刻度,并且数据将根据比例显示。另外我想从输入条目中删除“零”条目。我尝试使用numpy.where(matrix)
,但我不知道这是否真的符合我的要求......
这是我的代码:
#!/usr/bin/python
# Filename: untitled.py
# encoding: utf-8
from __future__ import division
from matplotlib.colors import LogNorm
import matplotlib
import numpy as np
import matplotlib.pylab as plt
import os
import matplotlib.cm as cm
def main():
dataFiles = [filename for filename in os.listdir(".") if (filename[-4:]==".log" and filename[0]!='.')]
dataFiles.sort()
p = []
matrix1 = []
matrix2 = []
matrix3 = []
for dataFile in dataFiles:
p += [ eval(dataFile[11:16]) ]
data = np.loadtxt(dataFile, skiprows=7)[:,1:4]
matrix1 += [ data[:,0] ]
matrix2 += [ data[:,1] ]
matrix3 += [ data[:,2] ]
matrixList = [matrix1, matrix2, matrix3]
#make histograms out of the matrices
matrix1Hist = [ np.histogram( matrixColumn, bins=30, range=(np.min(np.where(matrix1 != 0)), np.max(matrix1)))[0] for matrixColumn in matrix1 ]
matrix2Hist = [ np.histogram( matrixColumn, bins=200, range=(np.min(np.where(matrix2 != 0)), np.max(matrix2)))[0] for matrixColumn in matrix2 ]
matrix3Hist = [ np.histogram( matrixColumn, bins=50, range=(np.min(np.where(matrix3 != 0)), np.max(matrix3)))[0] for matrixColumn in matrix3 ]
# convert the matrixHistogramsto numpy arrays and swap axes
matrix1Hist = np.array(matrix1Hist).transpose()
matrix2Hist = np.array(matrix2Hist).transpose()
matrix3Hist = np.array(matrix3Hist).transpose()
matrixHistList = [matrix1Hist, matrix2Hist, matrix3Hist]
fig = plt.figure(0)
fig.clf()
for i,matrixHist in enumerate( [matrix1Hist, matrix2Hist, matrix3Hist] ):
ax = fig.add_subplot(2, 2, i+1)
ax.grid(True)
ax.set_title('matrix'+str(i+1))
if i < 2:
result = ax.imshow(matrixHist,
cmap=cm.gist_yarg,
origin='lower',
aspect='auto', #automatically span matrix to available space
interpolation='hanning',
extent= [ p[0], p[-1], np.floor( np.min( matrixList[i])), np.ceil( np.max( matrixList[i])) ] ,
)
elif i == 2:
result = ax.imshow(matrixHist,
cmap=cm.gist_yarg,
origin='lower',
aspect='auto', #automatically span matrix to available space
interpolation='hanning',
extent= [ p[0], p[-1], 1, np.log10(np.max( matrixList[i])) ] ,
)
ticks_at = [ 0 , abs(matrixHist).max()]
fig.colorbar(result, ticks=ticks_at,format='%1.2g')
plt.show()
if __name__ == '__main__':
main()
答案 0 :(得分:3)
对于问题的第一部分,您有以下选项,
np.log(my_array)
。hist
绘图缩放轴。pcolor
关键字传递matplotlib.colors.LogNorm实例,缩放imshow
和norm
等二维颜色图。即imshow(my_array, cmap=mpl.cm.jet, norm=mpl.colors.LogNorm)
对于问题的第二部分 - 关于从数组中过滤零值 - 请尝试:
my_array = my_array[my_array != 0]
my_array != 0
创建一个True
和False
s的逻辑数组,然后在切片中使用。但是,这会返回您可能不想要的一维数组。要将值设置为其他值(并保持2D形状),请使用以下(值设置为NaN
)...
my_array[my_array != 0] = np.NaN