我正在尝试将 SelectKBest()
函数应用于名为 x_train
的 Pandas 数据帧中的特定连续数字特征,同时标签列被定义为名为 {{ 的二元响应变量 (1,0) 列1}}:
y_train
然而,当应用 from sklearn.metrics import mutual_info_score
from sklearn.feature_selection import SelectKBest, f_classif
numerical_features=['col1', 'col2']
########################################################################
def get_numerical_features(features, class_label):
class_label=pd.DataFrame(class_label)
fs=SelectKBest(f_classif, k='all')
for feature in features:
fs.fit(class_label, feature)
return(print('Feature %d: %f' % (feature, fs.scores_[feature])))
#######################################################################
# applying the function
get_numerical_features(features=x_train[numerical_features], class_label=y_train)
时,输出是下一个:
TypeError: Singleton array array('col1', dtype=' 我错过了什么? 有没有办法将每一列转换为有效的集合?数据演示
get_numerical_features()
答案 0 :(得分:1)
我错过了什么?
fs.scores_
实际上是一个形状为 (2,) 的数组,您无法使用 feature
对其进行索引。试试:
from sklearn.metrics import mutual_info_score
from sklearn.feature_selection import SelectKBest, f_classif
numerical_features=['col1', 'col2']
def get_numerical_features(features, class_label):
#class_label is already a Dataframe in your data demo
fs=SelectKBest(f_classif, k='all')
fs.fit(features, class_label) # this should be here
for i, feature in zip(range(len(features)), features):
print('Feature %s: %f' % (feature, fs.scores_[i]))
# applying the function
x_train = pd.DataFrame({'col1': [1, 2, 7, 10, 2], 'col2': [3, 4, 27, 3, 1]})
y_train = pd.DataFrame({'label': [0, 0, 0, 1, 1]})
get_numerical_features(features=x_train[numerical_features], class_label=y_train['label'])
#output:
#Feature col1: 0.486076
#Feature col2: 0.846043
<块引用>
有没有办法将每一列转换为有效的集合?
为此,您可以使用 fit_transform
自动选择得分最高的 k
功能。
fs = SelectKBest(f_classif, k=1) # with `all` all features will be selected, default=10
x_train_new = fs.fit_transform(features, class_label)
print(x_train_new) # since k=1, this prints the values of col2 wich has high score