我试图从大型数据框中找出最佳功能。我可以获取压缩的数据帧值,但无法获取所选功能的名称。 下面是我的代码:
print('Shape of the bigramdf before feature selection:',bigram_df.shape)
if not os.path.isfile('smalldata/bigram_feather_top_100.feather'):
SelectKBest(score_func=chi2,k=100).fit(bigram_df.iloc[:,:-1],df['class'])
cols=SelectKBest.get_support(indices=False) # I am getting error here
selc_k_best_byte_bigram=bigram_df[:,cols]
selc_k_best_byte_bigram['id']=bigram_df['id']
selc_k_best_byte_bigram.to_feather('smalldata/bigram_feather_top_100.feather')
print('Shape of the bigramdf before feature selection:',selc_k_best_byte_bigram.shape)
else:
selc_k_best_byte_bigram=pd.read_feather('smalldata/bigram_feather_top_100.feather')
我遇到以下错误:
TypeError: get_support() missing 1 required positional argument: 'self'
有人可以帮助我找到为什么我收到此TypeError
答案 0 :(得分:1)
我认为您需要在变量中初始化类,然后调用.get_support。因此,请尝试替换:
SelectKBest(score_func=chi2,k=100).fit(bigram_df.iloc[:,:-1],df['class'])
与
k_best = SelectKBest(score_func=chi2,k=100).fit(bigram_df.iloc[:,:-1],df['class'])
cols = k_best.get_support(indices=False)