mu
无法定义。
Definiton mu (A : Type) (f : A -> A) : A := f (mu A f).
然而,Axiom 命令可用于伪定义 mu
。
Axiom mu : forall A : Type, (A -> A) -> A.
Axiom mu_beta : forall (A : Type) (f : A -> A), mu A f = f (mu A f).
我可以对 higher_path
和 higher_path_argument
做同样的事情吗?即使使用了几种技术,它似乎仍然是不可能的。
Definition higher_path
: forall n : nat, higher_path_argument n -> Type
:= fun n : nat =>
match n with
| O => fun x : higher_path_argument 0 => x
| S n_p =>
fun x : higher_path_argument (S n_p) =>
match x with
| existT _ x_a x_b =>
match x_b with
| pair x_b_a x_b_b => x_b_a = x_b_b :> higher_path n_p x_a
end
end
end.
Definition higher_path_argument
: nat -> Type
:= fun n : nat =>
match n with
| O => Type
| S n_p =>
sigT
(A := higher_path_argument n_p)
(fun x_p => prod (higher_path n_p x_p) (higher_path n_p x_p))
end.
答案 0 :(得分:1)
你必须从
开始Axiom higher_path_argument : nat -> Type.
Axiom higher_path : forall n : nat, higher_path_argument n -> Type.
然后 higher_path_argument_beta
您必须在 higher_path_beta
中使用它来计算类型。然而,你最终会得到一些非常冗长的东西。