我设法从给定的 CSV 文件加载了联合数据集,并且我正在尝试对可用数据执行一些联合学习。
我现在的问题是如何重现一个工作示例来构建一个迭代过程,该过程对这些数据执行自定义联合平均。
这个问题是上一个问题的续篇,此处Build Custom Federated averaging process with ValueError: Layer sequential expects 1 inputs, but it received 3 input tensors。 (特别感谢@Zachary Garrett 帮助解决了之前的问题)。
这是我的代码,但它不起作用
import collections
import os
import numpy as np
import pandas as pd
import tensorflow as tf
import tensorflow_federated as tff
from absl import app
from tensorflow.keras import layers
from src.main.Utils import Util, StringBuilder
from src.main import Parameters
from src.main.federated.Model_State import ClientState
global input_spec
import random
def main(args):
working_dir = "D:/User/Documents/GitHub/TriaBaseMLBackup/input/fakehdfs/nms/ystr=2016/ymstr=1/ymdstr=28"
client_id_colname = 'counter'
SHUFFLE_BUFFER = 1000
NUM_EPOCHS = 1
for root, dirs, files in os.walk(working_dir):
file_list = []
for filename in files:
if filename.endswith('.csv'):
file_list.append(os.path.join(root, filename))
df_list = []
for file in file_list:
df = pd.read_csv(file, delimiter="|", usecols=[1, 2, 6, 7], header=None, na_values=["NIL"],
na_filter=True, names=["time", "meas_info", "counter", "value"],encoding='latin-1')
# df_list.append(df[["value"]])
if df_list:
rawdata = pd.concat(df_list)
#print(df.head())
client_ids = df.get(client_id_colname)
train_client_ids = client_ids.sample(frac=0.5).tolist()
#test_client_ids = [x for x in client_ids if x not in train_client_ids]
# test_client_ids = [x for x in client_ids if x not in train_client_ids]
def create_tf_dataset_for_client_fn(client_id):
# a function which takes a client_id and returns a
# tf.data.Dataset for that client
# target = df.pop('value')
client_data = df[df['value'] == client_id]
#print(df.head())
features = ['time', 'meas_info', 'value']
LABEL_COLUMN = 'counter'
dataset = tf.data.Dataset.from_tensor_slices(
(collections.OrderedDict(client_data[features].to_dict('list')),
client_data[LABEL_COLUMN].to_list())
)
global input_spec
input_spec = dataset.element_spec
dataset = dataset.shuffle(SHUFFLE_BUFFER).batch(1).repeat(NUM_EPOCHS)
return dataset
train_data = tff.simulation.ClientData.from_clients_and_fn(
client_ids=train_client_ids,
create_tf_dataset_for_client_fn=create_tf_dataset_for_client_fn
)
# test_data = tff.simulation.ClientData.from_clients_and_fn(
# client_ids=test_client_ids,
# create_tf_dataset_for_client_fn=create_tf_dataset_for_client_fn
#)
example_dataset = train_data.create_tf_dataset_for_client(
train_data.client_ids[0]
)
# split client id into train and test clients
loss_builder = tf.keras.losses.SparseCategoricalCrossentropy
metrics_builder = lambda: [tf.keras.metrics.SparseCategoricalAccuracy()]
def retrieve_model():
SEQUENCE_LENGTH = 5
features = ['time', 'meas_info', 'value']
input_dict = {f: tf.keras.layers.Input(shape=(SEQUENCE_LENGTH, 1), name=f) for f in features}
concatenated_inputs = tf.keras.layers.Concatenate()(input_dict.values())
lstm_output = tf.keras.layers.LSTM(2, input_shape=(1, 2), return_sequences=True)(concatenated_inputs)
logits = tf.keras.layers.Dense(256, activation=tf.nn.relu)(lstm_output)
predictions = tf.keras.layers.Activation(tf.nn.softmax)(logits)
model = tf.keras.models.Model(inputs=input_dict, outputs=predictions)
return model
print(input_spec)
def tff_model_fn() -> tff.learning.Model:
return tff.learning.from_keras_model(
keras_model=retrieve_model(),
input_spec=example_dataset.element_spec,
loss=loss_builder(),
metrics=metrics_builder())
iterative_process = tff.learning.build_federated_averaging_process(
tff_model_fn, Parameters.server_adam_optimizer_fn, Parameters.client_adam_optimizer_fn)
server_state = iterative_process.initialize()
for round_num in range(Parameters.FLAGS.total_rounds):
sampled_clients = np.random.choice(
train_data.client_ids,
size=Parameters.FLAGS.train_clients_per_round,
replace=False)
sampled_train_data = [
train_data.create_tf_dataset_for_client(client)
for client in sampled_clients
]
server_state, metrics = iterative_process.next(server_state, sampled_train_data)
#train_metrics = metrics['train']
print('round {:2d}, metrics={}'.format(round_num, metrics))
#broadcasted_bits, aggregated_bits = evaluate(round_num, train_metrics, server_state, model, environment, metric, str_acc, str_loss)
这是 input_spec 输出:
(OrderedDict([('time', TensorSpec(shape=(), dtype=tf.int32, name=None)), ('meas_info', TensorSpec(shape=(), dtype=tf.int32, name=None)), ('value', TensorSpec(shape=(), dtype=tf.int64, name=None))]), TensorSpec(shape=(), dtype=tf.float32, name=None))
这是我得到的错误:
ValueError: Input 0 of layer lstm is incompatible with the layer: expected ndim=3, found ndim=1. Full shape received: [None]
任何人都可以根据我的案例帮助重现一个工作示例吗?