我正在尝试将 Conv1D 层应用于具有数字数据集的分类模型。我的模型的神经网络如下
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Conv1D(8,kernel_size = 3, strides = 1,padding = 'valid', activation = 'relu',input_shape = (14999,7)))
model.add(tf.keras.layers.Conv1D(16,kernel_size = 3, strides = 1,padding = 'valid', activation = 'relu'))
model.add(tf.keras.layers.MaxPooling1D(2))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Conv1D(32,kernel_size = 3, strides = 1,padding = 'valid', activation = 'relu'))
model.add(tf.keras.layers.Conv1D(64,kernel_size = 3, strides = 1,padding = 'valid', activation = 'relu'))
model.add(tf.keras.layers.MaxPooling1D(2))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Conv1D(128,kernel_size = 3, strides = 1,padding = 'valid', activation = 'relu'))
model.add(tf.keras.layers.Conv1D(256,kernel_size = 3, strides = 1,padding = 'valid', activation = 'relu'))
model.add(tf.keras.layers.MaxPooling1D(2))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(512,activation = 'relu'))
model.add(tf.keras.layers.Dense(128,activation = 'relu'))
model.add(tf.keras.layers.Dense(32,activation = 'relu'))
model.add(tf.keras.layers.Dense(3, activation = 'softmax'))
模型的输入形状是 (14999, 7).
model.summary() 给出以下输出
Model: "sequential_8"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv1d_24 (Conv1D) (None, 14997, 8) 176
_________________________________________________________________
conv1d_25 (Conv1D) (None, 14995, 16) 400
_________________________________________________________________
max_pooling1d_10 (MaxPooling (None, 7497, 16) 0
_________________________________________________________________
dropout_9 (Dropout) (None, 7497, 16) 0
_________________________________________________________________
conv1d_26 (Conv1D) (None, 7495, 32) 1568
_________________________________________________________________
conv1d_27 (Conv1D) (None, 7493, 64) 6208
_________________________________________________________________
max_pooling1d_11 (MaxPooling (None, 3746, 64) 0
_________________________________________________________________
dropout_10 (Dropout) (None, 3746, 64) 0
_________________________________________________________________
conv1d_28 (Conv1D) (None, 3744, 128) 24704
_________________________________________________________________
conv1d_29 (Conv1D) (None, 3742, 256) 98560
_________________________________________________________________
max_pooling1d_12 (MaxPooling (None, 1871, 256) 0
_________________________________________________________________
dropout_11 (Dropout) (None, 1871, 256) 0
_________________________________________________________________
flatten_3 (Flatten) (None, 478976) 0
_________________________________________________________________
dense_14 (Dense) (None, 512) 245236224
_________________________________________________________________
dense_15 (Dense) (None, 128) 65664
_________________________________________________________________
dense_16 (Dense) (None, 32) 4128
_________________________________________________________________
dense_17 (Dense) (None, 3) 99
=================================================================
Total params: 245,437,731
Trainable params: 245,437,731
Non-trainable params: 0
那么模型拟合的代码如下
model.compile(loss = 'sparse_categorical_crossentropy', optimizer = 'adam', metrics = ['accuracy'])
history = model.fit(xtrain_scaled, ytrain_scaled, epochs = 30, batch_size = 5, validation_data = (xval_scaled, yval_scaled))
在执行时,我面临以下错误
ValueError: Input 0 is incompatible with layer model: expected shape=(None, 14999, 7), found shape=(None, 7)
谁能帮我解决这个问题...? 提前致谢:)
答案 0 :(得分:2)
TL;DR:
改变
model.add(tf.keras.layers.Conv1D(8,kernel_size = 3, strides = 1,padding = 'valid', activation = 'relu',input_shape = (14999,7)))
到
model.add(tf.keras.layers.Conv1D(8,kernel_size = 3, strides = 1,padding = 'valid', activation = 'relu',input_shape = (7)))
完整答案:
假设:我猜您选择在输入形状中写入 14999 的原因是因为这是您的批量大小/训练数据的总大小
这个问题:
input_shape
,您让 Tensorflow 期待形状为 (Batch_size, 14999, 7)
的 3D 输入。但是您的输入显然大小为 (Batch_size, 7)
解决方案:
将形状从 (14999, 7)
更改为仅 (7)
PS:不要担心告知您的模型您在数据集中有多少训练示例。 TF Keras 假设它可以展示无限的训练示例。