我正在用 python 从头开始实现一个神经网络,以在手写数据集的 mnist 数据集上训练它。我试图调试它,但我仍然找不到它为什么训练这么慢。当我绘制损失时,它会下降,但在预测数字时,它似乎只是随机预测。我已经用 iris 数据集对其进行了测试,它可以正确预测类别,但不能在手写数据集中...这是代码:
import numpy as np
import mnist
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from keras.utils import to_categorical
from sklearn.metrics import accuracy_score
def ReLU(z):
z[z<0] = 0
return z
def ReLU_prime(z):
z[z<0] = 0
z[z>=0] = 1
return z
def softmax(z):
return np.exp(z)/np.sum(np.exp(z),axis=0)
class NN:
def __init__(self,layers,lr=0.0001):
self.layers = layers
self.lr = lr
self.n_layers = len(layers)
self.weights = [np.random.randn(y,x)/np.sqrt(y) for x,y in zip(layers[:-1],layers[1:])]
self.biases = [np.zeros((y,1)) for y in layers[1:]]
def forward(self,X):
A = X.copy()#nxm
if len(A.shape) == 1:
A = A[:,np.newaxis]
cache = [(None,A)]
for l in range(self.n_layers - 1):
Z = np.dot(self.weights[l],A) + self.biases[l]
if l < self.n_layers - 2:
A = ReLU(Z)
else:
A = softmax(Z)
cache.append((Z,A))
return A,cache
def backprop(self,X,Y):
A,cache = self.forward(X)
m = X.shape[1]
dz = A - Y
dwdbs = []
for l in reversed(range(1,self.n_layers)):
dw = (1/m)*np.dot(dz,cache[l-1][1].T)
db = (1/m)*np.sum(dz,axis=1)[:,np.newaxis]
if l > 1:
da = np.dot(self.weights[l-1].T,dz)
dz = da*ReLU_prime(cache[l-1][0])
dwdbs.append((dw,db))
for i,(w,b) in enumerate(dwdbs):
self.weights[self.n_layers - 2 - i] -= self.lr*dwdbs[i][0]
self.biases[self.n_layers - 2 - i] -= self.lr*dwdbs[i][1]
return self.loss(X,Y)
def loss(self,X,Y):
A,_ = self.forward(X)
m = Y.shape[1]
idxs = np.where(Y==1)
return -(1/m)*np.sum(Y[idxs]*np.log(A[idxs]),axis=0)
def predict(self,a):
return np.argmax(a)
if __name__ == '__main__':
X,y = mnist.train_images()[:10_000],mnist.train_labels()[:10_000]
X_train,X_test, y_train,y_test = train_test_split(X,y,test_size=0.1)
X_train_orig = X_train.copy()
X_test_orig = X_test.copy()
X_train = X_train/255
X_train = np.reshape(X_train,(784,-1))
N = X_train.shape[1]
X_test = X_test/255
X_test = np.reshape(X_test,(784,-1))
y_train_ = np.zeros((10,y_train.shape[0]))
y_train_[y_train,[x for x in range(y_train.shape[0])]] = 1
y_train = y_train_.copy()
y_test = y_test
nn = NN([784,150,150,50,10],0.1)
epochs = 10_000
losses = []
for epoch in range(epochs):
print('epoch',epoch,'lr',nn.lr)
nn.lr *=0.99992
idxs = np.random.permutation(N)
loss = nn.backprop(X_train[:,idxs],y_train[:,idxs])
losses.append(loss)
print(loss)
plt.plot([x for x in range(len(losses))],losses)
plt.show()
acc = 0
N_test = X_test.shape[1]
preds = []
for i in range(10):
idx = np.random.choice(N_test)
a,_ = nn.forward(X_test[:,idx])
plt.imshow(X_test_orig[idx])
plt.show()
a = nn.predict(a)
print('a',a,'y',y_test[idx])
if a == y_test[idx]:
acc +=1
print('acc',acc)