我编写了以下代码来在我的数据集上训练 bert
模型,但是当我执行它时,我在实现 tqdm
的部分出现错误。我在下面编写了完整的训练代码,并详细描述了错误。如何解决这个问题?
TRANSFORMERS = {
"bert-multi-cased": (BertModel, BertTokenizer, "bert-base-uncased"),
}
class Transformer(nn.Module):
def __init__(self, model, num_classes=1):
"""
Constructor
Arguments:
model {string} -- Transformer to build the model on. Expects "camembert-base".
num_classes {int} -- Number of classes (default: {1})
"""
super().__init__()
self.name = model
model_class, tokenizer_class, pretrained_weights = TRANSFORMERS[model]
bert_config = BertConfig.from_json_file(MODEL_PATHS[model] + 'bert_config.json')
bert_config.output_hidden_states = True
self.transformer = BertModel(bert_config)
self.nb_features = self.transformer.pooler.dense.out_features
self.pooler = nn.Sequential(
nn.Linear(self.nb_features, self.nb_features),
nn.Tanh(),
)
self.logit = nn.Linear(self.nb_features, num_classes)
def forward(self, tokens):
"""
Usual torch forward function
Arguments:
tokens {torch tensor} -- Sentence tokens
Returns:
torch tensor -- Class logits
"""
_, _, hidden_states = self.transformer(
tokens, attention_mask=(tokens > 0).long()
)
hidden_states = hidden_states[-1][:, 0] # Use the representation of the first token of the last layer
ft = self.pooler(hidden_states)
return self.logit(ft)
def fit(model, train_dataset, val_dataset, epochs=1, batch_size=8, warmup_prop=0, lr=5e-4):
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
optimizer = AdamW(model.parameters(), lr=lr)
num_warmup_steps = int(warmup_prop * epochs * len(train_loader))
num_training_steps = epochs * len(train_loader)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps)
loss_fct = nn.BCEWithLogitsLoss(reduction='mean').cuda()
for epoch in range(epochs):
model.train()
start_time = time.time()
optimizer.zero_grad()
avg_loss = 0
for step, (x, y_batch) in tqdm(enumerate(train_loader), total=len(train_loader)):
y_pred = model(x.to(device))
loss = loss_fct(y_pred.view(-1).float(), y_batch.float().to(device))
loss.backward()
avg_loss += loss.item() / len(train_loader)
xm.optimizer_step(optimizer, barrier=True)
#optimizer.step()
scheduler.step()
model.zero_grad()
optimizer.zero_grad()
model.eval()
preds = []
truths = []
avg_val_loss = 0.
with torch.no_grad():
for x, y_batch in tqdm(val_loader):
y_pred = model(x.to(device))
loss = loss_fct(y_pred.detach().view(-1).float(), y_batch.float().to(device))
avg_val_loss += loss.item() / len(val_loader)
probs = torch.sigmoid(y_pred).detach().cpu().numpy()
preds += list(probs.flatten())
truths += list(y_batch.numpy().flatten())
score = roc_auc_score(truths, preds)
dt = time.time() - start_time
lr = scheduler.get_last_lr()[0]
print(f'Epoch {epoch + 1}/{epochs} \t lr={lr:.1e} \t t={dt:.0f}s \t loss={avg_loss:.4f} \t val_loss={avg_val_loss:.4f} \t val_auc={score:.4f}')
错误
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<timed eval> in <module>
<ipython-input-19-e47eae808597> in fit(model, train_dataset, val_dataset, epochs, batch_size, warmup_prop, lr)
22 for step, (x, y_batch) in tqdm(enumerate(train_loader), total=len(train_loader)):
23
---> 24 y_pred = model(x.to(device))
25
26 loss = loss_fct(y_pred.view(-1).float(), y_batch.float().to(device))
/opt/conda/lib/python3.6/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
724 result = self._slow_forward(*input, **kwargs)
725 else:
--> 726 result = self.forward(*input, **kwargs)
727 for hook in itertools.chain(
728 _global_forward_hooks.values(),
<ipython-input-11-2002cc7ec843> in forward(self, tokens)
41 )
42
---> 43 hidden_states = hidden_states[-1][:, 0] # Use the representation of the first token of the last layer
44
45 ft = self.pooler(hidden_states)
TypeError: string indices must be integers
答案 0 :(得分:1)
您的代码是为旧版本的转换器库设计的:
AttributeError: 'str' object has no attribute 'dim' in pytorch
因此,您需要降级到 3.0.0 版,或者调整代码以处理 bert 的新格式输出。