我正在尝试使用以下代码遍历我预训练的 CNN,它从 PyTorch 的示例中略有修改:
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for i, batch in loaders[phase]:
inputs = batch["image"].float().to(device) # <---- error happens here
labels = batch["label"].float().to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return model
但是我得到了错误:
Epoch 0/24
----------
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-53-79684c739f29> in <module>()
----> 1 model_ft = train_model(resnet_cnn, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=25)
<ipython-input-49-55bb790e99a0> in train_model(model, criterion, optimizer, scheduler, num_epochs)
21 # Iterate over data.
22 for i, batch in loaders[phase]:
---> 23 inputs = batch["image"].float().to(device)
24 labels = batch["label"].float().to(device)
25
TypeError: string indices must be integers
加载器变量是:
loaders = {"train":train_loader, "val":valid_loader}
我在 train_loader 和 valid_loader 中使用的 Dataset 类是,并解释了我在初始模型函数中使用字符串的原因:
class GetDataLabel(Dataset):
def __init__(self, df, root, transform = None):
self.df = df
self.root = root
self.transform = transform
def __len__(self):
return len(self.df)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
img_path = os.path.join(self.root, self.df.iloc[idx, 0])
img = Image.open(img_path)
label = self.df.iloc[idx, 1]
if self.transform:
img = self.transform(img)
img_lab = {"image": img,
"label": label}
return (img_lab)
提前致谢。
答案 0 :(得分:1)
缺少一个 enumerate
:
for i, batch in enumerate(loaders[phase]): # <--- here
inputs = batch["image"].float().to(device)
labels = batch["label"].float().to(device)