async function train() {
var labels = [0] // 0 = L
var tensorLabels = tf.oneHot(tf.tensor1d(labels, 'int32'), 3);
var buffer = fs.readFileSync("./train/L/L.png")
var tensorFeature = tf.node.decodeImage(buffer)
var tensorFeatures = tf.stack([tensorFeature])
const model = tf.sequential();
model.add(tf.layers.conv2d({
inputShape: [1, 132, 180, 3], // numberOfChannels = 3 for colorful images and one otherwise
filters: 32,
kernelSize: 3,
activation: 'relu',
}));
model.add(tf.layers.flatten()),
model.add(tf.layers.dense({units: 3, activation: 'softmax'}));
model.compile({loss: 'meanSquaredError', optimizer: 'sgd'})
model.fit(tensorFeatures, tensorLabels)
}
我正在尝试用字母“L”(132x180)训练张量流模型,我对 tf.我希望我能在使用图像的训练方面得到一些帮助。
答案 0 :(得分:0)
通过改变 inputShape 修复:
inputShape: [180, 132, 3],