我的问题更具语义而非功能,因为代码似乎确实正确地实现了deQueue和enQueue函数。
reheapDown和reheapUp函数使用不正确,我相信问题在于我的堆函数
package priqueue;
public class Hosheap{
private Patient[] elements;
private int numElements;
public Hosheap(int maxSize)
{
elements= new Patient[maxSize];
numElements=maxSize;
}
public void ReheapDown(int root,int bottom)
{
int maxChild;
int rightChild;
int leftChild;
leftChild=root*2+1;
rightChild=root*2+2;
if (leftChild<=bottom)
{
if(leftChild==bottom)
maxChild=leftChild;
else
{
if(elements[leftChild].getPriority() <= elements[rightChild].getPriority())
maxChild=rightChild;
else
maxChild=leftChild;
}
if(elements[root].getPriority()<elements[maxChild].getPriority())
{
Swap(root,maxChild);
ReheapDown(maxChild,bottom);
}
}
}
public void ReheapUp(int root,int bottom)
{
int parent;
if(bottom>root)
{
parent=(bottom-1)/2;
if(elements[parent].getPriority()<elements[bottom].getPriority())
{
Swap(parent,bottom);
ReheapUp(root,parent);
}
}
}
public void Swap(int Pos1, int Pos2)
{
Patient temp;
temp = elements[Pos1];
elements[Pos1]=elements[Pos2];
elements[Pos2]=temp;
}
public Patient getElement(int e)
{
return elements[e];
}
public void setElement(Patient p, int n)
{
elements[n]=p;
}
}
这个想法是重新排列一个简单的优先级队列系统,这样当一个患者对象被删除时,ReheapUp或者down正确地重新排列队列,代码没有完成。我是否还应该包含优先级队列代码,或者这已经太长了?
我正在使用NetBeans IDE 6.0.1,如果有帮助的话。
答案 0 :(得分:1)
根据您的使用要求,与TreeSet相关的答案很可能会达到您想要的效果。
但是,如果确实需要队列而不是排序集合,则内置PriorityQueue可能会有用。
答案 1 :(得分:0)
不完全回答您的问题,但使用Java您可能需要查看内置的Collection类。您可以获得优先级队列行为,但使用TreeSet(一种有序集)并为Patient实例实现自定义Comparator。根据您的目标,这可能更合适。它看起来像这样:
在Patient.java ......
class Patient implements Comparator {
...
public int compareTo(Patient other) {
return getPriority() > other.getPriority() ? 1 : 0;
}
然后在你想要使用队列的地方
Set<Patient> queue = new TreeSet<Patient>();
queue.add(p1);
queue.add(p2);
//traverse in order of priority
for(Patient p : queue) {
doStuff();
}
答案 2 :(得分:0)
这是PriorityHeap的简单实现。我编写它很快,所以它可能有一些缺陷,但我已经实现了pushUp()和pushDown()逻辑。
import java.util.Random;
public class Heap {
private Double[] data;
private int lastItem;
public Heap(int initialSize) {
// to simplify child/parent math leave the first index empty
// and use a lastItem that gives us the size
data = new Double[initialSize];
lastItem = 0;
}
public void insert(Double d) {
// double size if needed
// should have a matching shrink but this is example code
if (lastItem + 1 >= data.length) {
Double[] doubled = new Double[data.length * 2];
System.arraycopy(data, 0, doubled, 0, data.length);
data = doubled;
}
data[lastItem + 1] = d;
lastItem++;
pushUp(lastItem);
}
public void pushDown(int index) {
if (lastItem > 1) {
int leftChildIndex = index * 2;
int rightChildIndex = leftChildIndex + 1;
// assume that neither child will dominate (in priority)
// the item at index
int indexToPromote = index;
// there may not be a left child
if (leftChildIndex <= lastItem) {
Double leftChild = data[leftChildIndex];
Double tmp = data[index];
if (tmp.compareTo(leftChild) < 0) {
indexToPromote = leftChildIndex;
}
// there might not be a right child
if (rightChildIndex <= lastItem) {
Double rightChild = data[rightChildIndex];
tmp = data[indexToPromote];
if (tmp.compareTo(rightChild) < 0) {
indexToPromote = rightChildIndex;
}
}
}
// did either child dominate the item at index
// if so swap and push down again
if (indexToPromote != index) {
swap(index, indexToPromote);
pushDown(indexToPromote);
}
}
}
public void pushUp(int index) {
if (index > 1) {
// equivalent to floor((double)index/2.0d);
// if item at index is greater than its parent
// push the item up to until if finds a home
int parentIndex = index >>> 1;
Double parent = data[parentIndex];
Double item = data[index];
if (item.compareTo(parent) > 0) {
swap(parentIndex, index);
pushUp(parentIndex);
}
}
}
public Double removeTop() {
// assume size is zero then examine other cases
Double top = null;
if (lastItem > 1) {
// save the top item and take the bottom item and place it
// at the top the push the new top item down until it
// finds a home
top = data[1];
Double bottom = data[lastItem];
lastItem--;
data[1] = bottom;
pushDown(1);
} else if (lastItem == 1) {
top = data[1];
lastItem--;
}
return top;
}
public int size() {
return lastItem;
}
private void swap(int index1, int index2) {
Double temp = data[index1];
data[index1] = data[index2];
data[index2] = temp;
}
public static void main(String[] args) {
Heap heap = new Heap(4);
Random r = new Random();
for (int i = 0; i < 100000; i++) {
Double d = Double.valueOf(r.nextDouble() * 100.0d);
heap.insert(d);
}
double max = Double.MAX_VALUE;
while (heap.size() > 0) {
Double top = heap.removeTop();
if (top.doubleValue() > max) {
System.out.println("bad ordering...");
}
max = top.doubleValue();
System.out.println(max);
}
System.out.println("done...");
}
}