在Python中,计算两个列表之间差异的最佳方法是什么?
例如
A = [1,2,3,4]
B = [2,5]
A - B = [1,3,4]
B - A = [5]
答案 0 :(得分:322)
如果订单无关紧要,您只需计算设定差价:
>>> set([1,2,3,4]) - set([2,5])
set([1, 4, 3])
>>> set([2,5]) - set([1,2,3,4])
set([5])
答案 1 :(得分:169)
如果您不关心商品订单或重复,请使用set
。如果您这样做,请使用list comprehensions:
>>> def diff(first, second):
second = set(second)
return [item for item in first if item not in second]
>>> diff(A, B)
[1, 3, 4]
>>> diff(B, A)
[5]
>>>
答案 2 :(得分:61)
你可以做一个
list(set(A)-set(B))
和
list(set(B)-set(A))
答案 3 :(得分:22)
一个班轮:
diff = lambda l1,l2: [x for x in l1 if x not in l2]
diff(A,B)
diff(B,A)
或者:
diff = lambda l1,l2: filter(lambda x: x not in l2, l1)
diff(A,B)
diff(B,A)
答案 4 :(得分:13)
上述例子使计算差异的问题变得微不足道。假设排序或重复数据删除肯定会使计算差异更容易,但如果您的比较无法承担这些假设,那么您将需要一个非平凡的diff算法实现。请参阅python标准库中的difflib。
from difflib import SequenceMatcher
squeeze=SequenceMatcher( None, A, B )
print "A - B = [%s]"%( reduce( lambda p,q: p+q,
map( lambda t: squeeze.a[t[1]:t[2]],
filter(lambda x:x[0]!='equal',
squeeze.get_opcodes() ) ) ) )
A - B = [[1,3,4]]
答案 5 :(得分:12)
Python 2.7.3(默认,2014年2月27日,19:58:35) - IPython 1.1.0 - timeit:(github gist)
def diff(a, b):
b = set(b)
return [aa for aa in a if aa not in b]
def set_diff(a, b):
return list(set(a) - set(b))
diff_lamb_hension = lambda l1,l2: [x for x in l1 if x not in l2]
diff_lamb_filter = lambda l1,l2: filter(lambda x: x not in l2, l1)
from difflib import SequenceMatcher
def squeezer(a, b):
squeeze = SequenceMatcher(None, a, b)
return reduce(lambda p,q: p+q, map(
lambda t: squeeze.a[t[1]:t[2]],
filter(lambda x:x[0]!='equal',
squeeze.get_opcodes())))
结果:
# Small
a = range(10)
b = range(10/2)
timeit[diff(a, b)]
100000 loops, best of 3: 1.97 µs per loop
timeit[set_diff(a, b)]
100000 loops, best of 3: 2.71 µs per loop
timeit[diff_lamb_hension(a, b)]
100000 loops, best of 3: 2.1 µs per loop
timeit[diff_lamb_filter(a, b)]
100000 loops, best of 3: 3.58 µs per loop
timeit[squeezer(a, b)]
10000 loops, best of 3: 36 µs per loop
# Medium
a = range(10**4)
b = range(10**4/2)
timeit[diff(a, b)]
1000 loops, best of 3: 1.17 ms per loop
timeit[set_diff(a, b)]
1000 loops, best of 3: 1.27 ms per loop
timeit[diff_lamb_hension(a, b)]
1 loops, best of 3: 736 ms per loop
timeit[diff_lamb_filter(a, b)]
1 loops, best of 3: 732 ms per loop
timeit[squeezer(a, b)]
100 loops, best of 3: 12.8 ms per loop
# Big
a = xrange(10**7)
b = xrange(10**7/2)
timeit[diff(a, b)]
1 loops, best of 3: 1.74 s per loop
timeit[set_diff(a, b)]
1 loops, best of 3: 2.57 s per loop
timeit[diff_lamb_filter(a, b)]
# too long to wait for
timeit[diff_lamb_filter(a, b)]
# too long to wait for
timeit[diff_lamb_filter(a, b)]
# TypeError: sequence index must be integer, not 'slice'
@ roman-bodnarchuk列表理解函数 def diff(a,b)似乎更快。
答案 6 :(得分:9)
A = [1,2,3,4]
B = [2,5]
#A - B
x = list(set(A) - set(B))
#B - A
y = list(set(B) - set(A))
print x
print y
答案 7 :(得分:8)
您可能希望使用set
代替list
。
答案 8 :(得分:3)
如果您想要以递归的方式深入到列表的项目中,我已经为python编写了一个包:https://github.com/erasmose/deepdiff
从PyPi安装:
pip install deepdiff
如果您是Python3,还需要安装:
pip install future six
>>> from deepdiff import DeepDiff
>>> from pprint import pprint
>>> from __future__ import print_function
相同的对象返回空
>>> t1 = {1:1, 2:2, 3:3}
>>> t2 = t1
>>> ddiff = DeepDiff(t1, t2)
>>> print (ddiff.changes)
{}
项目类型已更改
>>> t1 = {1:1, 2:2, 3:3}
>>> t2 = {1:1, 2:"2", 3:3}
>>> ddiff = DeepDiff(t1, t2)
>>> print (ddiff.changes)
{'type_changes': ["root[2]: 2=<type 'int'> vs. 2=<type 'str'>"]}
项目的价值已更改
>>> t1 = {1:1, 2:2, 3:3}
>>> t2 = {1:1, 2:4, 3:3}
>>> ddiff = DeepDiff(t1, t2)
>>> print (ddiff.changes)
{'values_changed': ['root[2]: 2 ====>> 4']}
添加和/或删除了项目
>>> t1 = {1:1, 2:2, 3:3, 4:4}
>>> t2 = {1:1, 2:4, 3:3, 5:5, 6:6}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes)
{'dic_item_added': ['root[5, 6]'],
'dic_item_removed': ['root[4]'],
'values_changed': ['root[2]: 2 ====>> 4']}
字符串差异
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world"}}
>>> t2 = {1:1, 2:4, 3:3, 4:{"a":"hello", "b":"world!"}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ 'values_changed': [ 'root[2]: 2 ====>> 4',
"root[4]['b']:\n--- \n+++ \n@@ -1 +1 @@\n-world\n+world!"]}
>>>
>>> print (ddiff.changes['values_changed'][1])
root[4]['b']:
---
+++
@@ -1 +1 @@
-world
+world!
字符串差异2
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world!\nGoodbye!\n1\n2\nEnd"}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world\n1\n2\nEnd"}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ 'values_changed': [ "root[4]['b']:\n--- \n+++ \n@@ -1,5 +1,4 @@\n-world!\n-Goodbye!\n+world\n 1\n 2\n End"]}
>>>
>>> print (ddiff.changes['values_changed'][0])
root[4]['b']:
---
+++
@@ -1,5 +1,4 @@
-world!
-Goodbye!
+world
1
2
End
输入类型
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world\n\n\nEnd"}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ 'type_changes': [ "root[4]['b']: [1, 2, 3]=<type 'list'> vs. world\n\n\nEnd=<type 'str'>"]}
列表差异
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2]}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ 'list_removed': ["root[4]['b']: [3]"]}
列表差异2:请注意,它没有考虑到订单
>>> # Note that it DOES NOT take order into account
... t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 3, 2]}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ }
包含字典的列表:
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, {1:1, 2:2}]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, {1:3}]}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ 'dic_item_removed': ["root[4]['b'][2][2]"],
'values_changed': ["root[4]['b'][2][1]: 1 ====>> 3"]}
答案 9 :(得分:3)
最简单的方法,
使用 set()。difference(set())
list_a = [1,2,3]
list_b = [2,3]
print set(list_a).difference(set(list_b))
答案是set([1])
答案 10 :(得分:1)
如果是词典列表,则完整列表推导解决方案可以在set
解决方案提升时使用
TypeError: unhashable type: 'dict'
def diff(a, b):
return [aa for aa in a if aa not in b]
d1 = {"a":1, "b":1}
d2 = {"a":2, "b":2}
d3 = {"a":3, "b":3}
>>> diff([d1, d2, d3], [d2, d3])
[{'a': 1, 'b': 1}]
>>> diff([d1, d2, d3], [d1])
[{'a': 2, 'b': 2}, {'a': 3, 'b': 3}]
答案 11 :(得分:0)
查看In-operator的TimeComplexity时,在最坏的情况下,它与O(n)一起使用。即使是套装。
因此,在比较两个数组时,我们将在最佳情况下具有O(n)的TimeComplexity,在最坏的情况下具有O(n ^ 2)。
另一种(但不幸的是更复杂的)解决方案,在最佳和最差情况下与O(n)一起使用是这样的:
# Compares the difference of list a and b
# uses a callback function to compare items
def diff(a, b, callback):
a_missing_in_b = []
ai = 0
bi = 0
a = sorted(a, callback)
b = sorted(b, callback)
while (ai < len(a)) and (bi < len(b)):
cmp = callback(a[ai], b[bi])
if cmp < 0:
a_missing_in_b.append(a[ai])
ai += 1
elif cmp > 0:
# Item b is missing in a
bi += 1
else:
# a and b intersecting on this item
ai += 1
bi += 1
# if a and b are not of same length, we need to add the remaining items
for ai in xrange(ai, len(a)):
a_missing_in_b.append(a[ai])
return a_missing_in_b
e.g。
>>> a=[1,2,3]
>>> b=[2,4,6]
>>> diff(a, b, cmp)
[1, 3]
答案 12 :(得分:0)
如果需要,简单的代码可为您带来多项不同:
a=[1,2,3,3,4]
b=[2,4]
tmp = copy.deepcopy(a)
for k in b:
if k in tmp:
tmp.remove(k)
print(tmp)
答案 13 :(得分:0)
添加答案以解决我们希望与重复严格区别的情况,即,我们希望保留结果中的第一个列表中存在重复。例如得到,
[1, 1, 1, 2] - [1, 1] --> [1, 2]
我们可以使用一个额外的计数器来具有精美的差分功能。
from collections import Counter
def diff(first, second):
secondCntr = Counter(second)
second = set(second)
res = []
for i in first:
if i not in second:
res.append(i)
elif i in secondCntr:
if secondCntr[i] > 0:
secondCntr[i] -= 1
else:
res.append(i)
return res
答案 14 :(得分:0)
我在此线程中没有看到保留 A 中重复的解决方案。当 A 的元素与 B 的元素匹配时,必须在 B 中删除该元素,以便在 A 中再次出现相同的元素时,如果该元素在 B 中只出现一次,则它必须出现在差异中。
def diff(first, second):
l2 = list(second)
l3 = []
for el in first:
if el in l2:
l2.remove(el)
else:
l3 += [el]
return l3
l1 = [1, 2, 1, 3, 4]
l2 = [1, 2, 3, 3]
diff(l1, l2)
>>> [1, 4]
答案 15 :(得分:0)
执行此操作有 3 种选择,其中两种可以接受,一种不应该这样做。
概括地说,这 3 个选项是:
选项 3) 不应该被选择超过选项 2)。根据您的应用程序的需求,您可能更喜欢选项 1) 或 2),而 2) 可能是大多数用例中的首选方法。 2) 与 1) 的性能非常相似,因为两者都具有 O(m + n)
时间复杂度。相比之下,2) 在空间复杂度上比 1) 有边际优势,并且保持原始列表的顺序和原始列表中的任何重复。
如果您想删除重复项并且不关心顺序,那么 1) 可能最适合您。
import time
def fun1(l1, l2):
# Order and duplications in l1 are both lost, O(m) + O(n)
return set(l1) - set(l2)
def fun2(l1, l2):
# Order and duplications in l1 are both preserved, O(m) + O(n)
l2_set = set(l2)
return [item for item in l1 if item not in l2_set]
def fun3(l1, l2):
# Order and duplications in l1 are both preserved, O(m * n)
# Don't do
return [item for item in l1 if item not in l2]
A = list(range(7500))
B = list(range(5000, 10000))
loops = 100
start = time.time()
for _ in range(loops):
fun1(A, B)
print(f"fun1 time: {time.time() - start}")
start = time.time()
for _ in range(loops):
fun2(A, B)
print(f"fun2 time: {time.time() - start}")
start = time.time()
for _ in range(loops):
fun3(A, B)
print(f"fun3 time: {time.time() - start}")
fun1 time: 0.03749704360961914
fun2 time: 0.04109621047973633
fun3 time: 32.55076885223389