我的代码可以很好地工作,直到适合最终模型为止。但是我不知道如何为管道做GridSearchCV或RandomizedSearchCV。请帮助我。
import pandas as pd
import numpy as np
from sklearn.compose import make_column_transformer
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestRegressor
from sklearn.pipeline import make_pipeline
df = pd.read_csv('data/vehicle_dataset_v4A.csv')
X = df.drop('price', axis=1)
y = df['price']
numerical_ix = X.select_dtypes(include=['int64', 'float64']).columns
categorical_ix = X.select_dtypes(include=['object', 'bool']).columns
col_transform = make_column_transformer(
(OneHotEncoder(), categorical_ix),
(StandardScaler(), numerical_ix),
remainder='passthrough'
)
model = RandomForestRegressor()
pipe = make_pipeline(col_transform,model)
pipe.fit(X, y)
我尝试了以下代码。该代码运行时没有任何错误,但是当我尝试使用Gridsearchcv进行预测时,它会在不同的时间抛出不同的错误。希望对此有解决方案。否则,如果在进行网格搜索后可以知道什么是最佳参数,则可以将这些参数直接应用于模型。
lr = {
'base_score':[0.4,0.45,0.5,0.55,0.6],
'max_depth':[1,2,3,4,6,8,10],
'subsample':[0.5,0.6,0.7,0.8,0.9,1],
'n_estimators': [50,100,200,250,300],
'learning_rate': [0.05,0.1,0.4,0.5,0.8,0.9,1],
'min_child_weight': [0.1,0.5,1,1.5,2,3],
'gamma': [0,0.1,0.5,1,1.5,2,2.5,3]
}
clf = make_pipeline(OneHotEncoder(),
StandardScaler(with_mean=False),
GridSearchCV(RandomForestRegressor(),
param_grid=lr,
scoring='r2',cv=3,verbose=2))
答案 0 :(得分:0)
关于您的应用程序的三个想法:
jndi.properties
用于OneHotEncoder
,您不需要它。RandomForestRegressor
,这对您的问题来说是过大了。make_pipeline
,然后运行StandardScaler
。请对此进行测试,并向我们提供反馈。