我编写了脚本来检查tensorflow.keras和PlaidML
tensorflow 2.3.1
plaidml-keras 0.7.0
plaidml 0.7.0
Python 3.8.5
对于isGPU = True
(PlaidML)
Epoch 1/1
60000/60000 [==============================] - 21s 358us/step - loss: 0.2637 - acc: 0.9186 - val_loss: 0.0590 - val_acc: 0.9817
对于isGPU = False
(张量流)
469/469 [==============================] - 33s 71ms/step - loss: 2.2862 - accuracy: 0.1291 - val_loss: 2.2572 - val_accuracy: 0.3704
有一些区别。
也许False
显示了批次编号469/460
,而True
显示了样品编号60000/60000
,所以我想还可以。
True
更快(很好,可以)
但是,
为什么会发生?
我认为两者的学习方式都与60000个样本,128个batch_size和1个纪元相同。
为什么会有差异?
有人帮忙吗?
isGPU = True ## or False
if isGPU:
os.environ["KERAS_BACKEND"] = "plaidml.keras.backend"
import keras as myKeras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
else:
import tensorflow
import tensorflow.keras as myKeras
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten
from tensorflow.keras.layers import Conv2D, MaxPooling2D
from tensorflow.keras import backend as K
start = time.time()
num_classes = 10
img_rows, img_cols = 28, 28
# the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print('y_train shape:', y_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
y_train = myKeras.utils.to_categorical(y_train, num_classes)
y_test = myKeras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=myKeras.losses.categorical_crossentropy,
optimizer=myKeras.optimizers.Adadelta(),
metrics=['accuracy'])
model.fit(x_train, y_train,
batch_size=128,
epochs=1,
verbose=1,
validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
elapsed_time = time.time() - start
print("elapsed time:{0}".format(elapsed_time))