为什么当损失降低精度也降低时,张量流?

时间:2019-12-18 18:39:09

标签: python tensorflow

我正在尝试训练一个分类模型,该模型的损失在减少,但准确性也在下降,这对我来说没有意义。我以为我在计算精度时错了,但事实并非如此。随着损失的减少,准确性的提高不应该吗?还是损失与准确性之间根本没有关联?

import numpy as np
import random
import numpy.core.multiarray
import cv2
import tensorflow as tf
import pandas as pd
from glob import glob
from get_data import next_batch, rawData
test, train, result_dict = rawData()

# optimization varibles
learning_rate = 1e-3 # 0.05
epochs = 100 # 100
batch_size = 64 # 50
dropout = 0.9

# Network Parameters
n_input = 6000 # 784
n_hidden1 = 5000 # 512
n_hidden2 = 4500 # 32*12 # 256
n_hidden3 = 500 
n_output = 4 # 10

# declare the training data placeholders
X = tf.placeholder("float", [None, n_input])
Y = tf.placeholder("float", [None, n_output])
keep_prob = tf.placeholder(tf.float32)

# Weights 
weights = {
    'w1': tf.Variable(tf.truncated_normal([n_input, n_hidden1], stddev=0.1)),
    'w2': tf.Variable(tf.truncated_normal([n_hidden1, n_hidden2], stddev=0.1)),
    # 'w3': tf.Variable(tf.truncated_normal([n_hidden2, n_hidden3], stddev=0.1)),
    'out': tf.Variable(tf.truncated_normal([n_hidden2, n_output], stddev=0.1)),
}

# Biases
biases = {
    'b1': tf.Variable(tf.constant(0.1, shape=[n_hidden1])),
    'b2': tf.Variable(tf.constant(0.1, shape=[n_hidden2])),
    # 'b3': tf.Variable(tf.constant(0.1, shape=[n_hidden3])),
    'out': tf.Variable(tf.constant(0.1, shape=[n_output]))
}

# Layers
layer_1 = tf.nn.relu(tf.add(tf.matmul(X, weights['w1']), biases['b1']))
layer_2 = tf.nn.relu(tf.add(tf.matmul(layer_1, weights['w2']), biases['b2']))
# layer_3 = tf.nn.relu(tf.add(tf.matmul(layer_2, weights['w3']), biases['b3']))
layer_drop = tf.nn.dropout(layer_2, keep_prob)
output_layer = tf.matmul(layer_2, weights['out']) + biases['out']

# Gradient 
cross_entropy = tf.reduce_mean(
    tf.nn.softmax_cross_entropy_with_logits_v2(
        labels=Y, logits=output_layer
        ))
train_step = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cross_entropy)

# change that into tf.nn.softmax insta of argmax
correct_pred = tf.equal(tf.argmax(output_layer, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)


for i in range(epochs): 
    # batch_x, batch_y = mnist.train.next_batch(batch_size)
    mapIndexPosition = list(zip(train["data"], train["labels"]))
    random.shuffle(mapIndexPosition)
    r_data, r_labels = zip(*mapIndexPosition)

    batchs = next_batch(batch_size, r_data, r_labels, shuffle=False)

    # print("---------------- i: ", i)

    for batch in batchs:

        batch_x, batch_y = batch

        feed_dict ={X: batch_x, Y:batch_y, keep_prob: dropout}

        _, loss = sess.run([train_step, cross_entropy], feed_dict=feed_dict)
        acc = sess.run(accuracy, feed_dict=feed_dict)


    if i % 10 == 0:
        print(
            "Iteration",
            str(i),
            "\t| Loss =",
            str(loss),
            "\t| Accuracy =",
            str(acc)
            )
# test_accuracy = sess.run(accuracy, feed_dict={X: mnist.test.images, Y: mnist.test.labels, keep_prob: 1.0})
test_accuracy = sess.run(accuracy, feed_dict={X: test["data"], Y: test["labels"], keep_prob: 1.0})
print("\nAccuracy on test set:", test_accuracy)

处理数据文件:

import random
import numpy as np
import cv2
import pandas as pd
from glob import glob
# from data_structure import DataStructure

class GetData:

    bulk_data = None
    bulk_labels = None
    result = None
    img_data = None
    img_label = None
    result_dict = {'data': [], 'labels': []}

    def __init__(self, bulk_data, bulk_labels):
        # print("get_data works?")
        self.bulk_data = bulk_data
        self.bulk_labels = bulk_labels


        # Push the object in the array for the model class to use

    def structureData(self):
        # Object Structure in way that will have: Data and (correct) Label 
        # Make an object of whatever data came to be.
        self.result = []
        self.img_data = []
        self.img_label = []
        i = 0
        while(i < (len(self.bulk_data) and len(self.bulk_labels))):

            image = cv2.imread(self.bulk_data[i])

            scaled_image = cv2.resize(image, (64, 64))

            scaled_image = np.array(scaled_image).flatten()

            self.img_data.append(scaled_image)
            self.img_label.append(self.bulk_labels[i])

            self.result_dict["data"].append(scaled_image)
            self.result_dict["labels"].append(self.bulk_labels[i])

            i += 1

        return self.result

    def get_images(self):
        return self.img_data

    def get_label(self):
        return self.img_label

    def get_dict(self):
        return self.result_dict

    def get_raw_data(self):

        i = 0
        while(i < (len(self.bulk_data) and len(self.bulk_labels))):
            self.result_dict["data"].append(self.bulk_data[i])
            self.result_dict["labels"].append(self.bulk_labels[i])

            i += 1

        return self.result_dict

def next_batch(batch_size, data, labels, shuffle=False):
    data = np.asarray(data)
    labels = np.asarray(labels)

    # print(data.shape[0], labels.shape[0])
    # This has to change and iterate over the 
    assert data.shape[0] == labels.shape[0]
    if shuffle:
        indices = np.arange(data.shape[0])
        np.random.shuffle(indices)
    for start_idx in range(0, data.shape[0], batch_size):
        end_idx = min(start_idx + batch_size, data.shape[0])
        if shuffle:
            excerpt = indices[start_idx:end_idx]
        else:
            excerpt = slice(start_idx, end_idx)
        yield data[excerpt], labels[excerpt]


def rawData():
    test_data = {"data": [],"labels":[] }
    train_data = {"data": [], "labels": []}

    relationship_frame = pd.read_csv('relationships.csv')
    rawdata = relationship_frame.iloc[:,0].tolist()
    labels = relationship_frame.iloc[:,2].tolist()
    hot_encoding_labels = pd.get_dummies(labels)

    print(relationship_frame['Concentration'].value_counts())


    rawdata_temp = []

    for i in rawdata:
        raw_temp = eval(i)
        rawdata_temp.append(raw_temp)

    # print(len(rawdata_temp))
    data = GetData(rawdata_temp, hot_encoding_labels.values)

    result_dict = data.get_raw_data()

    # print(result_dict)
    test_ratio = round((len(result_dict["data"]) / 10) * 3)
    train_ratio = len(result_dict["data"]) - test_ratio

    test_data["data"] = result_dict["data"][:test_ratio]
    test_data["labels"] = result_dict["labels"][:test_ratio]

    # print(len(test_data["data"]), len(test_data["labels"]))

    for i in test_data["data"]:
        result_dict["data"].remove(i)
    for i in test_data["labels"]:
        result_dict["labels"].remove(i)

    train_data["data"] = result_dict["data"][:train_ratio]
    train_data["labels"] = result_dict["labels"][:train_ratio]

    # print(train_data["data"], len(train_data["labels"]))

    return test_data, train_data, result_dict

我得到的结果是:

Iteration 0     | Loss = 11616709.0     | Accuracy = 0.29166666
Iteration 10    | Loss = 133036.08      | Accuracy = 0.20833333
Iteration 20    | Loss = 51588.387      | Accuracy = 0.41666666
Iteration 30    | Loss = 8822.799       | Accuracy = 0.25
Iteration 40    | Loss = 1.3812752      | Accuracy = 0.25
Iteration 50    | Loss = 1.3597528      | Accuracy = 0.41666666
Iteration 60    | Loss = 1.3821254      | Accuracy = 0.375
Iteration 70    | Loss = 1.3808714      | Accuracy = 0.375
Iteration 80    | Loss = 1.3909651      | Accuracy = 0.25
Iteration 90    | Loss = 1.3287157      | Accuracy = 0.41666666

看到损耗降低,但精度也降低(损耗和精度是每批)。不知道是什么原因造成的。难道我做错了什么?任何帮助是极大的赞赏。谢谢。 :)

1 个答案:

答案 0 :(得分:1)

简短的回答:是的,看来您做错了什么,因为您的模型似乎收敛于看起来不合标准的精度。我不会尝试对部分代码进行逆向工程;我会帮助您了解要寻找的内容。


损失和准确性是相关的,但两者有很多空间可以朝着不同的方向前进。

准确度是一个离散量度,每个输入都有一个简单的二进制评分:如果您的模型得到正确的答案,则它会得分。批处理精度为点/输入。看来您的分数在24分中的5分至10分之间正确。

损失是评估结果的模拟指标。可以用许多不同的方法进行评估。我不知道您正在使用什么损失函数。我将用一个简单的例子来说明。

您正在尝试将输入图像分类为10位数之一,即0-9。一个简单的损失函数是您的实际猜测与100%某个预测之间的差。该模型选择最高匹配比例作为分类,但损失函数取决于置信度。

让我们仅查看数字1、2、3以使数字简短。在评估任意标记为A-D的图像时,请考虑这些情况。准确性只是最佳猜测是否正确;损失就是该模型对其正确答案的信心有多远。

  image =>   A    B    C    D
confidence
      1     1.0  0.0  0.4  0.48
      2     0.0  1.0  0.3  0.51
      3     0.0  0.0  0.3  0.01
    label    1    1    1    1

    acc     1    0    1    0
    error   0.0  1.0  0.6  0.52

对于每种情况:

  • A:已定标:模型100%正确无误:1分(准确性),0分损失
  • B:总失败:模型是100%正确和错误:0分,1.0损失
  • C:几乎不了解它:模型具有40%的置信度和正确性:1分,0.6损失(1.0-0.4,置信度差异)
  • D:几乎错失了一点:模型的置信度为51%,错误是:0分,损失0.52(1.0-0.48)

查看C和D,您会发现,对于正确的猜测,比对不正确的猜测,损失可能要更多,具体取决于模型对图像的困惑。


很明显,您的损失函数是不同的;它以某种方式缩放并使用其他功能。与大多数模型一样,损耗开始时非常高,并且下降得非常好。在第40次迭代中,您实现了非常低的损失:损失函数认为模型在评估图像方面做得很好。但是,返回的分类经常会出现一些问题:您的准确度大约为1/3。

您似乎只测试了24张图像;尽管可能会达到您的目的,但这将加剧该问题。我建议您跟踪预测置信度(softmax变换的向量结果),并将其与返回的预测进行比较。