我在运行时遇到此错误,您能帮我吗?
我的vocab大小为76,如下所示,
我的一些代码如下:
class LSTMClassifier(nn.Module):
def __init__(self, embed_size, hidden_size, vocab_size, num_layers, num_classes, batch_size):
super(LSTMClassifier, self).__init__()
self.embed_size = embed_size
self.hidden_size = hidden_size
self.batch_size = batch_size
self.num_layers = num_layers
self.embedding = nn.Embedding(vocab_size, embed_size) # a lookup table
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers, dropout=0.3, bidirectional=True)
self.fc = nn.Sequential(
nn.Linear(2*hidden_size, 100),
nn.ReLU(),
nn.Dropout(p=0.2),
nn.Linear(100, num_classes)
)
self.hidden = self.init_hidden()
def init_hidden(self):
h = to_var(torch.zeros((2*self.num_layers, self.batch_size, self.hidden_size)))
c = to_var(torch.zeros((2*self.num_layers, self.batch_size, self.hidden_size)))
return h, c
def forward(self, x):
x = self.embedding(x)
x, self.hidden = self.lstm(x, self.hidden)
x = self.fc(x[-1]) # select the last output
return x
# LSTM parameters
embed_size =100
hidden_size = 256
num_layers = 1
# training parameters
lr = 0.001
num_epochs = 10
vocab_size = 2 + len([w for (w, c) in train_ds.vocab.word2count.items() if c >= min_count])
print(vocab_size)
76
model = LSTMClassifier(embed_size=embed_size,
hidden_size=hidden_size,
vocab_size=vocab_size,
num_layers=num_layers,
num_classes=train_ds.num_classes,
batch_size=batch_size)
if use_gpu:
model = model.cuda()
hidden_size=hidden_size,
vocab_size=vocab_size,
num_layers=num_layers,
num_classes=train_ds.num_classes,
batch_size=batch_size)
if use_gpu:
model = model.cuda()
criterion = nn.CrossEntropyLoss()
if use_gpu:
criterion = criterion.cuda()
optimizer = optim.Adam(model.parameters(), lr=lr, betas=(0.7, 0.99))
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.975)
hist = train(model, train_dl, valid_dl, criterion, optimizer, scheduler, num_epochs)
错误
> IndexError Traceback (most recent call
> last) <ipython-input-55-7e0f888e140e> in <module>
> ----> 1 hist = train(model, train_dl, valid_dl, criterion, optimizer, scheduler, num_epochs)
>
> ~\train_utils.py in train(model, train_dl, valid_dl, criterion,
> optimizer, scheduler, num_epochs)
> 82
> 83 ## perform one epoch of training and validation
> ---> 84 trn_loss, trn_acc = train_step(model, train_dl, criterion, optimizer, scheduler)
> 85 val_loss, val_acc = validate_step(model, valid_dl, criterion)
> 86
>
> ~\train_utils.py in train_step(model, train_dl, criterion, optimizer,
> scheduler)
> 26 model.hidden = detach(model.hidden)
> 27 model.zero_grad()
> ---> 28 output = model(train_inputs.t())
> 29
> 30 loss = criterion(output, train_labels)
>
> C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\modules\module.py
> in _call_impl(self, *input, **kwargs)
> 720 result = self._slow_forward(*input, **kwargs)
> 721 else:
> --> 722 result = self.forward(*input, **kwargs)
> 723 for hook in itertools.chain(
> 724 _global_forward_hooks.values(),
>
> <ipython-input-21-360ed93de0e5> in forward(self, x)
> 24
> 25 def forward(self, x):
> ---> 26 x = self.embedding(x)
> 27 x, self.hidden = self.lstm(x, self.hidden)
> 28 x = self.fc(x[-1]) # select the last output
>
> C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\modules\module.py
> in _call_impl(self, *input, **kwargs)
> 720 result = self._slow_forward(*input, **kwargs)
> 721 else:
> --> 722 result = self.forward(*input, **kwargs)
> 723 for hook in itertools.chain(
> 724 _global_forward_hooks.values(),
>
> C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\modules\sparse.py
> in forward(self, input)
> 122
> 123 def forward(self, input: Tensor) -> Tensor:
> --> 124 return F.embedding(
> 125 input, self.weight, self.padding_idx, self.max_norm,
> 126 self.norm_type, self.scale_grad_by_freq, self.sparse)
>
> C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\functional.py in
> embedding(input, weight, padding_idx, max_norm, norm_type,
> scale_grad_by_freq, sparse) 1812 # remove once script
> supports set_grad_enabled 1813
> _no_grad_embedding_renorm_(weight, input, max_norm, norm_type)
> -> 1814 return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse) 1815 1816
>
> IndexError: index out of range in self