为什么我解决N个皇后区问题的回溯解决方案不起作用?

时间:2020-10-20 07:43:14

标签: c++ backtracking n-queens

这是我通过传递args:0和board从主函数调用它时返回的输出,其中0是要从其开始的行号,而board是一个填充有零的4x4电路板:

9       1       1       1
1       1       9       1
1       1       1       1
1       0       1       1

注意:9表示皇后,1表示受到皇后攻击的牢房,0是既没有女王也不受到皇后攻击的安全牢房。

bool queen_placer(int row, std::vector<std::vector<int>> &board)
{
    if (row == board.size())
    {
        return true;
    }
    for (int col = 0; col < board[0].size(); col++)
    {
        bool safe = is_valid(row, col, board); //is_valid returns true if the position doesn't contain any queen and is not attacked by any queen
        if (safe)
        {
            board[row][col] = 9;
            value_assigner(row, col, board); //value assigner just assigns the attack values of the queen so placed
            if (queen_placer(row++, board))
            {
                return true;
            }
            else
            {
                continue;
            }
        }
    }
    return false;
}

2 个答案:

答案 0 :(得分:1)

您没有回溯-回溯涉及撤消导致失败的选择,但是您的board[row][col]是永远的。

如果递归失败,则需要将板恢复到以前的状态。

答案 1 :(得分:0)

以下是正确的代码,仅在第9行和第21行进行了更改,从而解决了此问题:

bool queen_placer(int row, std::vector<std::vector<int>> &board)
{
    if (row == board.size())
    {
        return true;
    }
    for (int col = 0; col < board[0].size(); col++)
    {
        std::vector<std::vector<int>> board_prev = board; //Added line
        bool safe = is_valid(row, col, board); //is_valid returns true if the position doesn't contain any queen and is not attacked by any queen
        if (safe)
        {
            board[row][col] = 9;
            value_assigner(row, col, board); //value assigner just assigns the attack values of the queen so placed
            if (queen_placer(row + 1, board))
            {
                return true;
            }
            else
            {
                board = board_prev; //Added line
                continue;
            }
        }
    }
    return false;
}

以下是此代码提供的输出:

1       9       1       1
1       1       1       9
9       1       1       1
1       1       9       1