我在 Keras 中有一个多层感知器网络,其中有两个隐藏层。
在尝试训练网络时,我在fit_generator中遇到错误:
ValueError:登录件和标签的形状必须相同((无,2)与(无,1))
import numpy as np
import keras
from keras import layers
from keras import Sequential
# Define Window size (color images)
img_window = (32,32,3)
# Flatten the Window shape
input_shape = np.prod(img_window)
print(input_shape)
# Define MLP with two hidden layers(neurons)
simpleMLP = Sequential(
[layers.Input(shape=img_window),
layers.Flatten(), # Flattens the input, conv2D to 1 vector , which does not affect the batch size.
layers.Dense(input_shape//2 ,activation="relu"),
layers.Dense(input_shape//2 ,activation="relu"),
layers.Dense(2,activation="sigmoid"),
]
)
# After model is "built" call its summary() menthod to display its contents
simpleMLP.summary()
# Initialization
# Size of the batches of data, adjust it depends on RAM
batch_size = 128
epochs = 5
# Compile MLP model with 3 arguments: loss function, optimizer, and metrics function to judge model performance
simpleMLP.compile(loss="binary_crossentropy",optimizer="adam",metrics=["binary_accuracy"]) #BCE
# Create ImagedataGenerator to splite training, validation dataset
from keras.preprocessing.image import ImageDataGenerator
train_dir = '/content/train'
train_datagen = ImageDataGenerator(
rescale=1./255, # rescaling factor
shear_range=0.1,
zoom_range=0.1,
horizontal_flip=True,
fill_mode='nearest')
valid_dir = '/content/valid'
valid_datagen =ImageDataGenerator(
rescale=1./255,
shear_range=0.1,
zoom_range=0.1,
horizontal_flip=True,
fill_mode='nearest')
train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=img_window[:2],
batch_size=batch_size,
class_mode='binary',
color_mode='rgb'
)
validation_generator = valid_datagen.flow_from_directory(
valid_dir,
target_size=img_window[:2],
batch_size=batch_size,
class_mode='binary',
color_mode='rgb')
# Train the MLP model
simpleMLP.fit_generator((
train_generator,
steps_per_epoch= 8271 // batch_size,
epochs=5,
validation_data=validation_generator,
validation_steps= 2072 // batch_size)
能否请您告诉我如何解决此问题?预先感谢。
答案 0 :(得分:1)
您的问题很简单,您有形状为(N, 1)
且损失定义为binary_crossentropy
的标签。这意味着您应该在最后一层中有一个输出节点。但是您有一个输出两个类的模型。
simpleMLP = Sequential(
[...
layers.Dense(2,activation="sigmoid"),
]
)
只需将其更改为
simpleMLP = Sequential(
[...
layers.Dense(1,activation="sigmoid"),
]
)