我运行model.fit()时出现Tensorflow错误。这是我的代码。
train_data = pd.read_csv('train.csv')
train_data = shuffle(train_data).reset_index(drop=True)
split_data = np.array_split(train_data, 50)
train_image = []
for i in tqdm(range(split_data[0].shape[0])):
path = 'train/train/'+str(train_data['category'][i]).zfill(2)+'/'+train_data['filename'][i]
img = image.load_img(path,target_size=(400,400,3))
img = image.img_to_array(img)
img = img/255
train_image.append(img)
X = np.array(train_image) # X.shape (2108, 400, 400, 3)
y = np.array(split_data[0]['category']) # y.shape (2108,)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42, test_size=0.1)
这是我的CNN模型。
model = Sequential()
model.add(Conv2D(filters=16, kernel_size=(5, 5), activation="relu", input_shape=(400,400,3)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
...
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(42, activation='sigmoid'))
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
model.fit(X_train, y_train, epochs=10, validation_data=(X_test, y_test), batch_size=64)
运行model.fit()时出错
ValueError: logits and labels must have the same shape ((None, 42) vs (None, 1))
X_train
的值array([[[[0.99607843, 0.99607843, 0.99607843],
[0.99607843, 0.99607843, 0.99607843],
[0.99607843, 0.99607843, 0.99607843],
...,
[1. , 1. , 1. ],
[1. , 1. , 1. ],
[1. , 1. , 1. ]],
...,
]]], dtype=float32)
和 y_train
的值array([ 5, 41, 24, ..., 41, 19, 40], dtype=int64)
答案 0 :(得分:2)
您正在执行多分类问题。您的标签也是整数编码
使用softmax作为最后一层的激活:Dense(42, activation='softmax')
和sparse_categorical_crossentropy
作为损失函数