ValueError:形状在LSTM模型中不兼容

时间:2020-10-16 00:42:01

标签: python tensorflow keras lstm sentiment-analysis

我正在基于以下参数创建LSTM模型

embed_dim = 128
lstm_out = 200
batch_size = 32

model = Sequential()
model.add(Embedding(2500, embed_dim,input_length = X.shape[1]))
model.add(Dropout(0.2))
model.add(LSTM(lstm_out))
model.add(Dense(2,activation='sigmoid'))
model.compile(loss = 'categorical_crossentropy', optimizer='adam',metrics = ['accuracy'])
print(model.summary())

Xtrain, Xtest, ytrain, ytest = train_test_split(X, train['target'], test_size = 0.2, shuffle=True)
print(Xtrain.shape, ytrain.shape)
print(Xtest.shape, ytest.shape)

model.fit(Xtrain, ytrain, batch_size =batch_size, epochs = 1,  verbose = 5)

但是我收到以下错误

ValueError: Shapes (32, 1) and (32, 2) are incompatible

您能帮我解决这个错误吗?

1 个答案:

答案 0 :(得分:0)

您的y_train来自Pandas数据框的单个列,该列是单个列。如果您的分类问题是二进制分类0/1问题,则此方法适用。然后,在输出层中只需一个神经元。

model = Sequential()
model.add(Embedding(2500, embed_dim,input_length = X.shape[1]))
model.add(Dropout(0.2))
model.add(LSTM(lstm_out))
# Only one neuron in the output layer
model.add(Dense(1,activation='sigmoid'))