GRPC / C ++-如何检测异步服务器中的客户端断开连接

时间:2020-10-10 19:51:05

标签: c++ grpc

我正在使用此example的代码来创建我的GRPC异步服务器:

#include <memory>
#include <iostream>
#include <string>
#include <thread>

#include <grpcpp/grpcpp.h>
#include <grpc/support/log.h>

#ifdef BAZEL_BUILD
#include "examples/protos/helloworld.grpc.pb.h"
#else
#include "helloworld.grpc.pb.h"
#endif

using grpc::Server;
using grpc::ServerAsyncResponseWriter;
using grpc::ServerBuilder;
using grpc::ServerContext;
using grpc::ServerCompletionQueue;
using grpc::Status;
using helloworld::HelloRequest;
using helloworld::HelloReply;
using helloworld::Greeter;

class ServerImpl final {
 public:
  ~ServerImpl() {
    server_->Shutdown();
    // Always shutdown the completion queue after the server.
    cq_->Shutdown();
  }

  // There is no shutdown handling in this code.
  void Run() {
    std::string server_address("0.0.0.0:50051");

    ServerBuilder builder;
    // Listen on the given address without any authentication mechanism.
    builder.AddListeningPort(server_address, grpc::InsecureServerCredentials());
    // Register "service_" as the instance through which we'll communicate with
    // clients. In this case it corresponds to an *asynchronous* service.

    //LINES ADDED BY ME TO IMPLEMENT KEEPALIVE 
    builder.AddListeningPort(server_address, grpc::InsecureServerCredentials());
    builder.AddChannelArgument(GRPC_ARG_KEEPALIVE_TIME_MS, 2000);
    builder.AddChannelArgument(GRPC_ARG_KEEPALIVE_TIMEOUT_MS, 3000);
    builder.AddChannelArgument(GRPC_ARG_KEEPALIVE_PERMIT_WITHOUT_CALLS, 1);
    //END OF LINES ADDED BY ME

    builder.RegisterService(&service_);
    // Get hold of the completion queue used for the asynchronous communication
    // with the gRPC runtime.
    cq_ = builder.AddCompletionQueue();
    // Finally assemble the server.
    server_ = builder.BuildAndStart();
    std::cout << "Server listening on " << server_address << std::endl;

    // Proceed to the server's main loop.
    HandleRpcs();
  }

 private:
  // Class encompasing the state and logic needed to serve a request.
  class CallData {
   public:
    // Take in the "service" instance (in this case representing an asynchronous
    // server) and the completion queue "cq" used for asynchronous communication
    // with the gRPC runtime.
    CallData(Greeter::AsyncService* service, ServerCompletionQueue* cq)
        : service_(service), cq_(cq), responder_(&ctx_), status_(CREATE) {
      // Invoke the serving logic right away.
      Proceed();
    }

    void Proceed() {
      if (status_ == CREATE) {
        // Make this instance progress to the PROCESS state.
        status_ = PROCESS;

        // As part of the initial CREATE state, we *request* that the system
        // start processing SayHello requests. In this request, "this" acts are
        // the tag uniquely identifying the request (so that different CallData
        // instances can serve different requests concurrently), in this case
        // the memory address of this CallData instance.
        service_->RequestSayHello(&ctx_, &request_, &responder_, cq_, cq_,
                                  this);
      } else if (status_ == PROCESS) {
        // Spawn a new CallData instance to serve new clients while we process
        // the one for this CallData. The instance will deallocate itself as
        // part of its FINISH state.
        new CallData(service_, cq_);

        // The actual processing.
        std::string prefix("Hello ");
        reply_.set_message(prefix + request_.name());

        // And we are done! Let the gRPC runtime know we've finished, using the
        // memory address of this instance as the uniquely identifying tag for
        // the event.
        status_ = FINISH;
        responder_.Finish(reply_, Status::OK, this);
      } else {
        GPR_ASSERT(status_ == FINISH);
        // Once in the FINISH state, deallocate ourselves (CallData).
        delete this;
      }
    }

   private:
    // The means of communication with the gRPC runtime for an asynchronous
    // server.
    Greeter::AsyncService* service_;
    // The producer-consumer queue where for asynchronous server notifications.
    ServerCompletionQueue* cq_;
    // Context for the rpc, allowing to tweak aspects of it such as the use
    // of compression, authentication, as well as to send metadata back to the
    // client.
    ServerContext ctx_;

    // What we get from the client.
    HelloRequest request_;
    // What we send back to the client.
    HelloReply reply_;

    // The means to get back to the client.
    ServerAsyncResponseWriter<HelloReply> responder_;

    // Let's implement a tiny state machine with the following states.
    enum CallStatus { CREATE, PROCESS, FINISH };
    CallStatus status_;  // The current serving state.
  };

  // This can be run in multiple threads if needed.
  void HandleRpcs() {
    // Spawn a new CallData instance to serve new clients.
    new CallData(&service_, cq_.get());
    void* tag;  // uniquely identifies a request.
    bool ok;
    while (true) {
      // Block waiting to read the next event from the completion queue. The
      // event is uniquely identified by its tag, which in this case is the
      // memory address of a CallData instance.
      // The return value of Next should always be checked. This return value
      // tells us whether there is any kind of event or cq_ is shutting down.
      GPR_ASSERT(cq_->Next(&tag, &ok));
      GPR_ASSERT(ok);
      static_cast<CallData*>(tag)->Proceed();
    }
  }

  std::unique_ptr<ServerCompletionQueue> cq_;
  Greeter::AsyncService service_;
  std::unique_ptr<Server> server_;
};

int main(int argc, char** argv) {
  ServerImpl server;
  server.Run();

  return 0;
}

因为我已经进行了研究,所以发现必须实现KeepAlive(https://grpc.github.io/grpc/cpp/md_doc_keepalive.html),所以我添加了以下几行:

builder.AddListeningPort(server_address, grpc::InsecureServerCredentials());
builder.AddChannelArgument(GRPC_ARG_KEEPALIVE_TIME_MS, 2000);
builder.AddChannelArgument(GRPC_ARG_KEEPALIVE_TIMEOUT_MS, 3000);
builder.AddChannelArgument(GRPC_ARG_KEEPALIVE_PERMIT_WITHOUT_CALLS, 1);

到目前为止,服务器可以正常工作并且通信正在畅通。但是,如何检测到客户端已断开连接?我为使所谓的KeepAlive方法添加的行似乎对我不起作用。

我的错误在哪里?当客户端由于任何原因断开连接时,如何在异步服务器上进行检测?

1 个答案:

答案 0 :(得分:2)

让我从一些背景知识开始。

了解gRPC的重要一件事是它使用HTTP / 2在单个TCP连接上多路复用多个流。每个gRPC调用都是一个单独的流,无论该调用是一元调用还是流传输。一般而言,任何gRPC调用都可以从双方发送零个或多个消息。一元呼叫只是一种特殊情况,从客户端到服务器只有一条消息,而从服务器到客户端只有一条消息。

我们通常使用“断开连接”一词来表示TCP连接断开,而不是指单个流终止,尽管有时人们使用相反的含义。我不确定您在这里指的是什么,所以我都会回答。

gRPC API将流生命周期公开给应用程序,但不公开TCP连接生命周期。目的是该库处理所有管理TCP连接的细节,并将它们隐藏在应用程序中-我们实际上并没有提供一种方法来告知何时断开连接,并且您无需关心,因为库将自动为您重新连接。 :)对于应用程序而言唯一可见的情况是,如果某个流出现故障,而在单个TCP连接上已经有流在传输,则这些流将失败。

正如我所说,库确实向应用程序公开了各个流的生命周期;流的生存期基本上就是上面代码中CallData对象的生存期。有两种方法可以确定流是否已终止。一种是显式调用ServerContext::IsCancelled()。另一种是在CQ上请求一个事件,以通过ServerContext::AsyncNotifyWhenDone()异步通知取消应用程序。

请注意,通常,像上面的HelloWorld这样的一元示例实际上不必担心检测流取消,因为从服务器的角度来看,整个流的持续时间并不长。通常在流式调用的情况下更有用。但是也有一些例外情况,例如您的一元调用必须在发送响应之前执行大量昂贵的异步工作。

我希望此信息对您有所帮助。