我为vgg16模型运行以下代码行:
model.fit(X_train, y_train, epochs=1, verbose=2, validation_data=(X_test, y_test), batch_size=10)
我也更新了dens图层,因为我只有15个课程
model.add(Dense(units=15, activation='softmax'))
我的图片大小是: target_size =(224,224,3)
我的模型摘要是 [1]:https://i.stack.imgur.com/uDDOC.png
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
block1_conv1 (Conv2D) (None, 224, 224, 64) 1792
_________________________________________________________________
block1_conv2 (Conv2D) (None, 224, 224, 64) 36928
_________________________________________________________________
block1_pool (MaxPooling2D) (None, 112, 112, 64) 0
_________________________________________________________________
block2_conv1 (Conv2D) (None, 112, 112, 128) 73856
_________________________________________________________________
block2_conv2 (Conv2D) (None, 112, 112, 128) 147584
_________________________________________________________________
block2_pool (MaxPooling2D) (None, 56, 56, 128) 0
_________________________________________________________________
block3_conv1 (Conv2D) (None, 56, 56, 256) 295168
_________________________________________________________________
block3_conv2 (Conv2D) (None, 56, 56, 256) 590080
_________________________________________________________________
block3_conv3 (Conv2D) (None, 56, 56, 256) 590080
_________________________________________________________________
block3_pool (MaxPooling2D) (None, 28, 28, 256) 0
_________________________________________________________________
block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160
_________________________________________________________________
block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808
_________________________________________________________________
block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808
_________________________________________________________________
block4_pool (MaxPooling2D) (None, 14, 14, 512) 0
_________________________________________________________________
block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808
_________________________________________________________________
block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808
_________________________________________________________________
block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808
_________________________________________________________________
block5_pool (MaxPooling2D) (None, 7, 7, 512) 0
_________________________________________________________________
flatten (Flatten) (None, 25088) 0
_________________________________________________________________
fc1 (Dense) (None, 4096) 102764544
_________________________________________________________________
fc2 (Dense) (None, 4096) 16781312
_________________________________________________________________
dense (Dense) (None, 15) 61455
=================================================================
Total params: 134,321,999
Trainable params: 61,455
Non-trainable params: 134,260,544
_________________________________________________________________
我的错误是
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-30-6f2da1d97a07> in <module>
----> 1 model.fit(X_train, y_train, epochs=1, verbose=2, validation_data=(X_test, y_test), batch_size=10)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py in _method_wrapper(self, *args, **kwargs)
106 def _method_wrapper(self, *args, **kwargs):
107 if not self._in_multi_worker_mode(): # pylint: disable=protected-access
--> 108 return method(self, *args, **kwargs)
109
110 # Running inside `run_distribute_coordinator` already.
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)
1096 batch_size=batch_size):
1097 callbacks.on_train_batch_begin(step)
-> 1098 tmp_logs = train_function(iterator)
1099 if data_handler.should_sync:
1100 context.async_wait()
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds)
778 else:
779 compiler = "nonXla"
--> 780 result = self._call(*args, **kwds)
781
782 new_tracing_count = self._get_tracing_count()
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds)
812 # In this case we have not created variables on the first call. So we can
813 # run the first trace but we should fail if variables are created.
--> 814 results = self._stateful_fn(*args, **kwds)
815 if self._created_variables:
816 raise ValueError("Creating variables on a non-first call to a function"
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py in __call__(self, *args, **kwargs)
2826 """Calls a graph function specialized to the inputs."""
2827 with self._lock:
-> 2828 graph_function, args, kwargs = self._maybe_define_function(args, kwargs)
2829 return graph_function._filtered_call(args, kwargs) # pylint: disable=protected-access
2830
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs)
3208 and self.input_signature is None
3209 and call_context_key in self._function_cache.missed):
-> 3210 return self._define_function_with_shape_relaxation(args, kwargs)
3211
3212 self._function_cache.missed.add(call_context_key)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _define_function_with_shape_relaxation(self, args, kwargs)
3140
3141 graph_function = self._create_graph_function(
-> 3142 args, kwargs, override_flat_arg_shapes=relaxed_arg_shapes)
3143 self._function_cache.arg_relaxed[rank_only_cache_key] = graph_function
3144
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
3073 arg_names=arg_names,
3074 override_flat_arg_shapes=override_flat_arg_shapes,
-> 3075 capture_by_value=self._capture_by_value),
3076 self._function_attributes,
3077 function_spec=self.function_spec,
/opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
984 _, original_func = tf_decorator.unwrap(python_func)
985
--> 986 func_outputs = python_func(*func_args, **func_kwargs)
987
988 # invariant: `func_outputs` contains only Tensors, CompositeTensors,
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args, **kwds)
598 # __wrapped__ allows AutoGraph to swap in a converted function. We give
599 # the function a weak reference to itself to avoid a reference cycle.
--> 600 return weak_wrapped_fn().__wrapped__(*args, **kwds)
601 weak_wrapped_fn = weakref.ref(wrapped_fn)
602
/opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
971 except Exception as e: # pylint:disable=broad-except
972 if hasattr(e, "ag_error_metadata"):
--> 973 raise e.ag_error_metadata.to_exception(e)
974 else:
975 raise
ValueError: in user code:
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py:806 train_function *
return step_function(self, iterator)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py:796 step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
/opt/conda/lib/python3.7/site-packages/tensorflow/python/distribute/distribute_lib.py:1211 run
return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/distribute/distribute_lib.py:2585 call_for_each_replica
return self._call_for_each_replica(fn, args, kwargs)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/distribute/distribute_lib.py:2945 _call_for_each_replica
return fn(*args, **kwargs)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py:789 run_step **
outputs = model.train_step(data)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py:749 train_step
y, y_pred, sample_weight, regularization_losses=self.losses)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/compile_utils.py:204 __call__
loss_value = loss_obj(y_t, y_p, sample_weight=sw)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/losses.py:149 __call__
losses = ag_call(y_true, y_pred)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/losses.py:253 call **
return ag_fn(y_true, y_pred, **self._fn_kwargs)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/util/dispatch.py:201 wrapper
return target(*args, **kwargs)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/losses.py:1605 binary_crossentropy
K.binary_crossentropy(y_true, y_pred, from_logits=from_logits), axis=-1)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/util/dispatch.py:201 wrapper
return target(*args, **kwargs)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/backend.py:4829 binary_crossentropy
bce = target * math_ops.log(output + epsilon())
/opt/conda/lib/python3.7/site-packages/tensorflow/python/ops/math_ops.py:1141 binary_op_wrapper
raise e
/opt/conda/lib/python3.7/site-packages/tensorflow/python/ops/math_ops.py:1125 binary_op_wrapper
return func(x, y, name=name)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/ops/math_ops.py:1457 _mul_dispatch
return multiply(x, y, name=name)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/util/dispatch.py:201 wrapper
return target(*args, **kwargs)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/ops/math_ops.py:509 multiply
return gen_math_ops.mul(x, y, name)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/ops/gen_math_ops.py:6176 mul
"Mul", x=x, y=y, name=name)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/op_def_library.py:744 _apply_op_helper
attrs=attr_protos, op_def=op_def)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py:593 _create_op_internal
compute_device)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/ops.py:3485 _create_op_internal
op_def=op_def)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/ops.py:1975 __init__
control_input_ops, op_def)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/ops.py:1815 _create_c_op
raise ValueError(str(e))
ValueError: Dimensions must be equal, but are 244 and 15 for '{{node binary_crossentropy/mul}} = Mul[T=DT_FLOAT](binary_crossentropy/Cast, binary_crossentropy/Log)' with input shapes: [?,244], [?,15].
答案 0 :(得分:0)
原因可能似乎来自损失函数,因为可以编译模型。查看错误时,似乎您使用binary_crossentropy
对15个类进行了分类。这确实是错误的,binary_crossentropy
仅适用于2类分类。您应该改用categorical_crossentropy