ValueError:尺寸必须相等,但必须为244和15 .......输入形状:[?, 244],[?, 15]

时间:2020-10-05 20:48:17

标签: python machine-learning deep-learning neural-network conv-neural-network

我为vgg16模型运行以下代码行:

model.fit(X_train, y_train, epochs=1, verbose=2, validation_data=(X_test, y_test), batch_size=10)

我也更新了dens图层,因为我只有15个课程

model.add(Dense(units=15, activation='softmax'))

我的图片大小是: target_size =(224,224,3)

我的模型摘要是 [1]:https://i.stack.imgur.com/uDDOC.png

   Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
block1_conv1 (Conv2D)        (None, 224, 224, 64)      1792      
_________________________________________________________________
block1_conv2 (Conv2D)        (None, 224, 224, 64)      36928     
_________________________________________________________________
block1_pool (MaxPooling2D)   (None, 112, 112, 64)      0         
_________________________________________________________________
block2_conv1 (Conv2D)        (None, 112, 112, 128)     73856     
_________________________________________________________________
block2_conv2 (Conv2D)        (None, 112, 112, 128)     147584    
_________________________________________________________________
block2_pool (MaxPooling2D)   (None, 56, 56, 128)       0         
_________________________________________________________________
block3_conv1 (Conv2D)        (None, 56, 56, 256)       295168    
_________________________________________________________________
block3_conv2 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________
block3_conv3 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________
block3_pool (MaxPooling2D)   (None, 28, 28, 256)       0         
_________________________________________________________________
block4_conv1 (Conv2D)        (None, 28, 28, 512)       1180160   
_________________________________________________________________
block4_conv2 (Conv2D)        (None, 28, 28, 512)       2359808   
_________________________________________________________________
block4_conv3 (Conv2D)        (None, 28, 28, 512)       2359808   
_________________________________________________________________
block4_pool (MaxPooling2D)   (None, 14, 14, 512)       0         
_________________________________________________________________
block5_conv1 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_conv2 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_conv3 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_pool (MaxPooling2D)   (None, 7, 7, 512)         0         
_________________________________________________________________
flatten (Flatten)            (None, 25088)             0         
_________________________________________________________________
fc1 (Dense)                  (None, 4096)              102764544 
_________________________________________________________________
fc2 (Dense)                  (None, 4096)              16781312  
_________________________________________________________________
dense (Dense)                (None, 15)                61455     
=================================================================
Total params: 134,321,999
Trainable params: 61,455
Non-trainable params: 134,260,544
_________________________________________________________________

我的错误是

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-30-6f2da1d97a07> in <module>
----> 1 model.fit(X_train, y_train, epochs=1, verbose=2, validation_data=(X_test, y_test), batch_size=10)

/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py in _method_wrapper(self, *args, **kwargs)
    106   def _method_wrapper(self, *args, **kwargs):
    107     if not self._in_multi_worker_mode():  # pylint: disable=protected-access
--> 108       return method(self, *args, **kwargs)
    109 
    110     # Running inside `run_distribute_coordinator` already.

/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)
   1096                 batch_size=batch_size):
   1097               callbacks.on_train_batch_begin(step)
-> 1098               tmp_logs = train_function(iterator)
   1099               if data_handler.should_sync:
   1100                 context.async_wait()

/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds)
    778       else:
    779         compiler = "nonXla"
--> 780         result = self._call(*args, **kwds)
    781 
    782       new_tracing_count = self._get_tracing_count()

/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds)
    812       # In this case we have not created variables on the first call. So we can
    813       # run the first trace but we should fail if variables are created.
--> 814       results = self._stateful_fn(*args, **kwds)
    815       if self._created_variables:
    816         raise ValueError("Creating variables on a non-first call to a function"

/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py in __call__(self, *args, **kwargs)
   2826     """Calls a graph function specialized to the inputs."""
   2827     with self._lock:
-> 2828       graph_function, args, kwargs = self._maybe_define_function(args, kwargs)
   2829     return graph_function._filtered_call(args, kwargs)  # pylint: disable=protected-access
   2830 

/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs)
   3208           and self.input_signature is None
   3209           and call_context_key in self._function_cache.missed):
-> 3210         return self._define_function_with_shape_relaxation(args, kwargs)
   3211 
   3212       self._function_cache.missed.add(call_context_key)

/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _define_function_with_shape_relaxation(self, args, kwargs)
   3140 
   3141     graph_function = self._create_graph_function(
-> 3142         args, kwargs, override_flat_arg_shapes=relaxed_arg_shapes)
   3143     self._function_cache.arg_relaxed[rank_only_cache_key] = graph_function
   3144 

/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
   3073             arg_names=arg_names,
   3074             override_flat_arg_shapes=override_flat_arg_shapes,
-> 3075             capture_by_value=self._capture_by_value),
   3076         self._function_attributes,
   3077         function_spec=self.function_spec,

/opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
    984         _, original_func = tf_decorator.unwrap(python_func)
    985 
--> 986       func_outputs = python_func(*func_args, **func_kwargs)
    987 
    988       # invariant: `func_outputs` contains only Tensors, CompositeTensors,

/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args, **kwds)
    598         # __wrapped__ allows AutoGraph to swap in a converted function. We give
    599         # the function a weak reference to itself to avoid a reference cycle.
--> 600         return weak_wrapped_fn().__wrapped__(*args, **kwds)
    601     weak_wrapped_fn = weakref.ref(wrapped_fn)
    602 

/opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
    971           except Exception as e:  # pylint:disable=broad-except
    972             if hasattr(e, "ag_error_metadata"):
--> 973               raise e.ag_error_metadata.to_exception(e)
    974             else:
    975               raise

ValueError: in user code:

    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py:806 train_function  *
        return step_function(self, iterator)
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py:796 step_function  **
        outputs = model.distribute_strategy.run(run_step, args=(data,))
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/distribute/distribute_lib.py:1211 run
        return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/distribute/distribute_lib.py:2585 call_for_each_replica
        return self._call_for_each_replica(fn, args, kwargs)
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/distribute/distribute_lib.py:2945 _call_for_each_replica
        return fn(*args, **kwargs)
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py:789 run_step  **
        outputs = model.train_step(data)
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py:749 train_step
        y, y_pred, sample_weight, regularization_losses=self.losses)
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/compile_utils.py:204 __call__
        loss_value = loss_obj(y_t, y_p, sample_weight=sw)
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/losses.py:149 __call__
        losses = ag_call(y_true, y_pred)
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/losses.py:253 call  **
        return ag_fn(y_true, y_pred, **self._fn_kwargs)
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/util/dispatch.py:201 wrapper
        return target(*args, **kwargs)
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/losses.py:1605 binary_crossentropy
        K.binary_crossentropy(y_true, y_pred, from_logits=from_logits), axis=-1)
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/util/dispatch.py:201 wrapper
        return target(*args, **kwargs)
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/backend.py:4829 binary_crossentropy
        bce = target * math_ops.log(output + epsilon())
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/ops/math_ops.py:1141 binary_op_wrapper
        raise e
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/ops/math_ops.py:1125 binary_op_wrapper
        return func(x, y, name=name)
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/ops/math_ops.py:1457 _mul_dispatch
        return multiply(x, y, name=name)
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/util/dispatch.py:201 wrapper
        return target(*args, **kwargs)
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/ops/math_ops.py:509 multiply
        return gen_math_ops.mul(x, y, name)
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/ops/gen_math_ops.py:6176 mul
        "Mul", x=x, y=y, name=name)
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/op_def_library.py:744 _apply_op_helper
        attrs=attr_protos, op_def=op_def)
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py:593 _create_op_internal
        compute_device)
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/ops.py:3485 _create_op_internal
        op_def=op_def)
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/ops.py:1975 __init__
        control_input_ops, op_def)
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/ops.py:1815 _create_c_op
        raise ValueError(str(e))

    ValueError: Dimensions must be equal, but are 244 and 15 for '{{node binary_crossentropy/mul}} = Mul[T=DT_FLOAT](binary_crossentropy/Cast, binary_crossentropy/Log)' with input shapes: [?,244], [?,15].

1 个答案:

答案 0 :(得分:0)

原因可能似乎来自损失函数,因为可以编译模型。查看错误时,似乎您使用binary_crossentropy对15个类进行了分类。这确实是错误的,binary_crossentropy仅适用于2类分类。您应该改用categorical_crossentropy