我有一个df
name | week | %
mike Week 1 .45
mike Week 2 0
mike Week 3 .40
mike Week 4 .15
cindy Week 1 .25
cindy Week 2 .25
cindy Week 3 .25
cindy Week 4 .25
采样的df,其中我的实际df有更多名称
我正试图每周绘制每个名字的所有值,
我的密谋代码如下:
import plotly.graph_objects as go
names= df['name'].unique()
fig = go.Figure(data=[
go.Bar(name='Week 1', x=names, y=[.15, .29, .19, .07]),
go.Bar(name='Week 2', x=names, y=[.24, .15, .15, .15]),
go.Bar(name='Week 3', x=names, y=[.20, .19, .17, .11]),
go.Bar(name='Week 4', x=names, y=[.41, .37, .49, .67]),
])
# Change the bar mode
fig.update_layout(barmode='stack', title = 'title',xaxis_title='Month',
yaxis=dict(
tickformat="%",
))
fig.show()
但是我不想手动在y中键入第1周,第2周,第3周等的每个值。如何创建参考,其中绘图代码中每个星期的y都将引用第1周中的所有值,因此我不必键入?谢谢
答案 0 :(得分:1)
plotly.express
,它按列名获取整齐(长)的数据帧。import plotly.express as px
import pandas as pd
# sample dataframe
data = {'name': ['mike', 'mike', 'mike', 'mike', 'cindy', 'cindy', 'cindy', 'cindy'],
'week': ['Week 1', 'Week 2', 'Week 3', 'Week 4', 'Week 1', 'Week 2', 'Week 3', 'Week 4'],
'%': [0.45, 0.0, 0.4, 0.15, 0.25, 0.25, 0.25, 0.25]}
df = pd.DataFrame(data)
# display(df)
name week %
0 mike Week 1 0.45
1 mike Week 2 0.00
2 mike Week 3 0.40
3 mike Week 4 0.15
4 cindy Week 1 0.25
5 cindy Week 2 0.25
6 cindy Week 3 0.25
7 cindy Week 4 0.25
# plot the long (tidy) dataframe
fig = px.bar(df, x="name", y="%", color="week", title="Title", barmode='stack')
fig.update_layout(xaxis_title='Name', yaxis=dict(tickformat="%",))
fig.show()
plotly.graph_objects
需要使用plotly.graph_obj
来构建堆叠条形图的每个级别df.groupby
对象解压缩为必要的形式,例如go.Figure
import plotly.graph_objects as go
# using df from above, use groupby and a list comprehension to create data
data = [go.Bar(name=group, x=dfg['name'], y=dfg['%']) for group, dfg in df.groupby(by='week')]
# plot the figure
x = go.Figure(data)
x.update_layout(barmode='stack', title='Title', xaxis_title='Name', yaxis=dict(tickformat="%",))
x.show()