需要帮助来抓取大型存档

时间:2020-09-28 10:45:59

标签: r web-scraping

对于一个学校项目,我必须抓取一个没有问题的网站。但是为了将其命名为BigData,我想抓取整个存档(过去5年)。唯一更改URL的是URL末尾的日期,但我不知道如何编写仅更改末尾日期的脚本。

我正在使用的网站是:https://www.ongelukvandaag.nl/archief/

我需要的日期是2015年1月1日至2020年9月24日。我已经弄清楚了代码的第一部分,可以抓取一页。我是使用R的初学者,想知道是否有人可以帮助我。代码如下所示。预先感谢!

这是我到目前为止所得到的,错误在代码的下面。

install.packages("XML")
install.packages("reshape")
install.packages("robotstxt")
install.packages("Rcrawler")
install.packages("RSelenium")
install.packages("devtools")
install.packages("exifr")
install.packages("Publish")

devtools::install_github("r-lib/xml2")

library(rvest)
library(dplyr)
library(xml)
library(stringr)
library(jsonlite)
library(xml12)
library(purrr)
library(tidyr)
library(reshape)
library(XML)
library(robotstxt)
library(Rcrawler)
library(RSelenium)
library(ps)
library(devtools)
library(exifr)
library(Publish)

#Create an url object

url<-"https://www.ongelukvandaag.nl/archief/%d "

#Verify the web can be scrapped

paths_allowed(paths = c(url))

#Obtain the links for every day from 2015 to 2020

map_df(2015:2020, function(i){
  page<-read_html(sprintf(url,i))
  
  data.frame(Links = html_attr(html_nodes(page, ".archief a"),"href"))
}) -> Links %>%
  
Links$Links<-paste("https://www.ongelukvandaag.nl/",Links$Links,sep = "")

#Scrap what you want from each link:
  
d<- map(Links$Links, function(x) {
    
    Z <- read_html(x)
    
    Date <- Z %>% html_nodes(".text-muted") %>% html_text(trim = TRUE) # Last update
    All_title <- Z %>% html_nodes("h2") %>% html_text(trim = TRUE) # Title
    
    return(tibble(All_title,Date))
    
  })

我得到的错误:

Error in open.connection(x, "rb") : HTTP error 400. 

in paste("https://www.ongelukvandaag.nl/", Links$Links, sep = "") :   object 'Links' not found >

in map(Links$Links, function(x) { : object 'Links' not found

以及软件包“ xml12”和“ xml”在此版本的RStudio中不起作用

1 个答案:

答案 0 :(得分:0)

看看我的代码和注释:

library(purrr)
library(rvest) # don't load a lot of libraries if you don't need them
url <- "https://www.ongelukvandaag.nl/archief/"
bigdata <- 
  map_dfr(
    2015:2020,
    function(year){
      year_pg <- read_html(paste0(url, year))
      list_dates <- year_pg %>% html_nodes(xpath = "//div[@class='archief']/a") %>% html_text() # in case some dates are missing
      map_dfr(
        list_dates,
        function(date) {
          pg <- read_html(paste0(url, date))
          items <- pg %>% html_nodes("div.full > div.row")
          items <- items[sapply(items, function(x) length(x %>% html_node(xpath = "./descendant::h2"))) > 0] # drop NA items
          data.frame(
            date = date,
            title = items %>% html_node(xpath = "./descendant::h2") %>% html_text(),
            update = items %>% html_node(xpath = "./descendant::h4") %>% html_text(),
            image = items %>% html_node(xpath = "./descendant::img") %>% html_attr("src") 
          )
        }
      )
    }
  )