这是我的DataFrame中的一列:
Index Direction Output
10886 DOWN None
10887 UP None
10888 UP None
10889 UP None
10890 UP None
10891 UP STRONG_UP
10892 UP STRONG_UP
10893 UP STRONG_UP
10894 UP STRONG_UP
10895 UP STRONG_UP
10896 UP STRONG_UP
10897 UP STRONG_UP
10898 UP STRONG_UP
10899 UP STRONG_UP
10900 DOWN None
10901 DOWN None
10902 UP None
10903 UP None
10904 DOWN None
10905 DOWN None
10906 DOWN None
我想创建新列。
如果当前的Direction值和5个先前的Direction值== UP,则单元格将变为“ STRONG_UP”
如果当前的Direction值和5个以前的Direction值== DOWN,则单元格将变为“ STRONG_DOWN”
否则值为“无”
怎么做?
答案 0 :(得分:7)
不幸的是,rolling
仅适用于数字,因此使用map
进行解码和编码,但是如果使用较大的DataFrame,则速度较慢:
def f(x):
if np.all(x == 1):
return 2
elif np.all(x == 0):
return 3
else:
return np.nan
df['Output'] = df['Direction'].map({'UP':1,'DOWN':0})
.rolling(6)
.apply(f)
.map({2:'STRONG_UP',3:'STRONG_DOWN'})
print (df)
Index Direction Output
0 10887 UP NaN
1 10888 UP NaN
2 10889 UP NaN
3 10890 UP NaN
4 10891 UP NaN
5 10892 UP STRONG_UP
6 10893 UP STRONG_UP
7 10894 UP STRONG_UP
8 10895 UP STRONG_UP
9 10896 UP STRONG_UP
10 10897 UP STRONG_UP
11 10898 UP STRONG_UP
12 10899 UP STRONG_UP
13 10900 DOWN NaN
14 10901 DOWN NaN
15 10902 UP NaN
16 10903 UP NaN
17 10904 DOWN NaN
18 10905 DOWN NaN
19 10906 DOWN NaN
如果性能很重要,可以使用strides和numpy.select
的另一个想法:
def rolling_window(a, window):
shape = a.shape[:-1] + (a.shape[-1] - window + 1, window)
strides = a.strides + (a.strides[-1],)
return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)
n = 6
x = np.concatenate([[None] * (n-1), df['Direction'].to_numpy()])
a = rolling_window(x, n)
print (a)
[[None None None None None 'UP']
[None None None None 'UP' 'UP']
[None None None 'UP' 'UP' 'UP']
[None None 'UP' 'UP' 'UP' 'UP']
[None 'UP' 'UP' 'UP' 'UP' 'UP']
['UP' 'UP' 'UP' 'UP' 'UP' 'UP']
['UP' 'UP' 'UP' 'UP' 'UP' 'UP']
['UP' 'UP' 'UP' 'UP' 'UP' 'UP']
['UP' 'UP' 'UP' 'UP' 'UP' 'UP']
['UP' 'UP' 'UP' 'UP' 'UP' 'UP']
['UP' 'UP' 'UP' 'UP' 'UP' 'UP']
['UP' 'UP' 'UP' 'UP' 'UP' 'UP']
['UP' 'UP' 'UP' 'UP' 'UP' 'UP']
['UP' 'UP' 'UP' 'UP' 'UP' 'DOWN']
['UP' 'UP' 'UP' 'UP' 'DOWN' 'DOWN']
['UP' 'UP' 'UP' 'DOWN' 'DOWN' 'DOWN']
['UP' 'UP' 'DOWN' 'DOWN' 'DOWN' 'UP']
['UP' 'DOWN' 'DOWN' 'DOWN' 'UP' 'UP']
['DOWN' 'DOWN' 'DOWN' 'UP' 'UP' 'DOWN']
['DOWN' 'DOWN' 'UP' 'UP' 'DOWN' 'DOWN']]
m1 = np.all(a == 'UP', axis=1)
m2 = np.all(a == 'DOWN', axis=1)
df['Output'] = np.select([m1, m2], ['STRONG_UP','STRONG_DOWN'], None)
print (df)
Index Direction Output
0 10887 UP None
1 10888 UP None
2 10889 UP None
3 10890 UP None
4 10891 UP None
5 10892 UP STRONG_UP
6 10893 UP STRONG_UP
7 10894 UP STRONG_UP
8 10895 UP STRONG_UP
9 10896 UP STRONG_UP
10 10897 UP STRONG_UP
11 10898 UP STRONG_UP
12 10899 UP STRONG_UP
13 10900 DOWN None
14 10901 DOWN None
15 10902 DOWN None
16 10903 UP None
17 10904 UP None
18 10905 DOWN None
19 10906 DOWN None
性能:由于速度太慢,省略了Forst methof。
print (pd.show_versions())
INSTALLED VERSIONS
------------------
commit : f2ca0a2665b2d169c97de87b8e778dbed86aea07
python : 3.8.5.final.0
python-bits : 64
OS : Windows
OS-release : 7
Version : 6.1.7601
machine : AMD64
processor : Intel64 Family 6 Model 60 Stepping 3, GenuineIntel
byteorder : little
LC_ALL : None
LANG : en
LOCALE : Slovak_Slovakia.1250
pandas : 1.1.1
numpy : 1.19.1
import perfplot
np.random.seed(123)
def GW(df):
df['group'] = np.r_[True, df.Direction.values[1:] != df.Direction.values[:-1]].cumsum()
df['count'] = df.groupby('group').cumcount()+1
df['result'] = np.where(df['count'] >= 6, 'STRONG_'+df.Direction, np.nan)
df = (df[['Index','Direction','result']])
return df
def ST(df):
def rolling_window(a, window):
shape = a.shape[:-1] + (a.shape[-1] - window + 1, window)
strides = a.strides + (a.strides[-1],)
return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)
n = 6
x = np.concatenate([[None] * (n-1), df['Direction'].to_numpy()])
a = rolling_window(x, n)
m1 = np.all(a == 'UP', axis=1)
m2 = np.all(a == 'DOWN', axis=1)
df['Output2'] = np.select([m1, m2], ['STRONG_UP','STRONG_DOWN'], None)
return df
def make_df(n):
direction = np.random.choice(['UP','DOWN'], n)
df = pd.DataFrame({
'Index': np.arange(len(direction)),
'Direction': direction
})
return df
perfplot.show(
setup=make_df,
kernels=[GW, ST],
n_range=[2**k for k in range(5, 25)],
logx=True,
logy=True,
equality_check=False,
xlabel='len(df)')
答案 1 :(得分:1)
一个带有numpy且没有应用功能的想法
import numpy as np
df['group'] = np.r_[True, df.Direction.values[1:] != df.Direction.values[:-1]].cumsum()
df['count'] = df.groupby('group').cumcount()+1
df['result'] = np.where(df['count'] >= 6, 'STRONG_'+df.Direction, np.nan)
print(df[['Index','Direction','result']])
输出
Index Direction result
0 10887 UP NaN
1 10888 UP NaN
2 10889 UP NaN
3 10890 UP NaN
4 10891 UP NaN
5 10892 UP STRONG_UP
6 10893 UP STRONG_UP
7 10894 UP STRONG_UP
8 10895 UP STRONG_UP
9 10896 UP STRONG_UP
10 10897 UP STRONG_UP
11 10898 UP STRONG_UP
12 10899 UP STRONG_UP
13 10900 DOWN NaN
14 10901 DOWN NaN
15 10902 UP NaN
16 10903 UP NaN
17 10904 DOWN NaN
18 10905 DOWN NaN
19 10906 DOWN NaN
出于好奇,我在笔记本电脑(Jupyter Notebook中的i5-7200u,8GB Ram)上运行了一个基准测试
数据生成方式
direction = np.random.choice(['UP','DOWN'], 100000)
df = pd.DataFrame({
'Index': np.arange(len(direction)),
'Direction': direction
})
结果
N=1000 | N=10000 | N=100000
RA 32.7 ms ± 3.05 ms | 271 ms ± 22.9 ms | 2.35 s ± 60.1 ms
GW 6.33 ms ± 230 µs | 10.2 ms ± 51.4 µs | 63.8 ms ± 1.31 ms
NP 1.33 ms ± 32.5 µs | 8.21 ms ± 555 µs | 74.4 ms ± 2.73 ms