根据其他列中的值创建新列

时间:2020-09-17 11:40:49

标签: python pandas

这是我的DataFrame中的一列:

Index    Direction Output
10886    DOWN      None
10887      UP      None
10888      UP      None
10889      UP      None
10890      UP      None
10891      UP      STRONG_UP
10892      UP      STRONG_UP
10893      UP      STRONG_UP
10894      UP      STRONG_UP
10895      UP      STRONG_UP
10896      UP      STRONG_UP
10897      UP      STRONG_UP
10898      UP      STRONG_UP
10899      UP      STRONG_UP
10900    DOWN      None 
10901    DOWN      None
10902      UP      None
10903      UP      None
10904    DOWN      None
10905    DOWN      None
10906    DOWN      None

我想创建新列。
如果当前的Direction值和5个先前的Direction值== UP,则单元格将变为“ STRONG_UP”
如果当前的Direction值和5个以前的Direction值== DOWN,则单元格将变为“ STRONG_DOWN”
否则值为“无”
怎么做?

2 个答案:

答案 0 :(得分:7)

不幸的是,rolling仅适用于数字,因此使用map进行解码和编码,但是如果使用较大的DataFrame,则速度较慢:

def f(x):
    if np.all(x == 1):
        return 2
    elif np.all(x == 0):
        return 3
    else:
        return np.nan
        

df['Output'] = df['Direction'].map({'UP':1,'DOWN':0})
                              .rolling(6)
                              .apply(f)
                              .map({2:'STRONG_UP',3:'STRONG_DOWN'})

print (df)
    Index Direction     Output
0   10887        UP        NaN
1   10888        UP        NaN
2   10889        UP        NaN
3   10890        UP        NaN
4   10891        UP        NaN
5   10892        UP  STRONG_UP
6   10893        UP  STRONG_UP
7   10894        UP  STRONG_UP
8   10895        UP  STRONG_UP
9   10896        UP  STRONG_UP
10  10897        UP  STRONG_UP
11  10898        UP  STRONG_UP
12  10899        UP  STRONG_UP
13  10900      DOWN        NaN
14  10901      DOWN        NaN
15  10902        UP        NaN
16  10903        UP        NaN
17  10904      DOWN        NaN
18  10905      DOWN        NaN
19  10906      DOWN        NaN

如果性能很重要,可以使用stridesnumpy.select的另一个想法:

def rolling_window(a, window):
    shape = a.shape[:-1] + (a.shape[-1] - window + 1, window)
    strides = a.strides + (a.strides[-1],)
    return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)

n = 6
x = np.concatenate([[None] * (n-1), df['Direction'].to_numpy()])

a = rolling_window(x, n)

print (a)
[[None None None None None 'UP']
 [None None None None 'UP' 'UP']
 [None None None 'UP' 'UP' 'UP']
 [None None 'UP' 'UP' 'UP' 'UP']
 [None 'UP' 'UP' 'UP' 'UP' 'UP']
 ['UP' 'UP' 'UP' 'UP' 'UP' 'UP']
 ['UP' 'UP' 'UP' 'UP' 'UP' 'UP']
 ['UP' 'UP' 'UP' 'UP' 'UP' 'UP']
 ['UP' 'UP' 'UP' 'UP' 'UP' 'UP']
 ['UP' 'UP' 'UP' 'UP' 'UP' 'UP']
 ['UP' 'UP' 'UP' 'UP' 'UP' 'UP']
 ['UP' 'UP' 'UP' 'UP' 'UP' 'UP']
 ['UP' 'UP' 'UP' 'UP' 'UP' 'UP']
 ['UP' 'UP' 'UP' 'UP' 'UP' 'DOWN']
 ['UP' 'UP' 'UP' 'UP' 'DOWN' 'DOWN']
 ['UP' 'UP' 'UP' 'DOWN' 'DOWN' 'DOWN']
 ['UP' 'UP' 'DOWN' 'DOWN' 'DOWN' 'UP']
 ['UP' 'DOWN' 'DOWN' 'DOWN' 'UP' 'UP']
 ['DOWN' 'DOWN' 'DOWN' 'UP' 'UP' 'DOWN']
 ['DOWN' 'DOWN' 'UP' 'UP' 'DOWN' 'DOWN']]

m1 = np.all(a == 'UP', axis=1)
m2 = np.all(a == 'DOWN', axis=1)

df['Output'] = np.select([m1, m2], ['STRONG_UP','STRONG_DOWN'], None)

print (df)
    Index Direction     Output
0   10887        UP       None
1   10888        UP       None
2   10889        UP       None
3   10890        UP       None
4   10891        UP       None
5   10892        UP  STRONG_UP
6   10893        UP  STRONG_UP
7   10894        UP  STRONG_UP
8   10895        UP  STRONG_UP
9   10896        UP  STRONG_UP
10  10897        UP  STRONG_UP
11  10898        UP  STRONG_UP
12  10899        UP  STRONG_UP
13  10900      DOWN       None
14  10901      DOWN       None
15  10902      DOWN       None
16  10903        UP       None
17  10904        UP       None
18  10905      DOWN       None
19  10906      DOWN       None

性能:由于速度太慢,省略了Forst methof。

print (pd.show_versions())


INSTALLED VERSIONS
------------------
commit           : f2ca0a2665b2d169c97de87b8e778dbed86aea07
python           : 3.8.5.final.0
python-bits      : 64
OS               : Windows
OS-release       : 7
Version          : 6.1.7601
machine          : AMD64
processor        : Intel64 Family 6 Model 60 Stepping 3, GenuineIntel
byteorder        : little
LC_ALL           : None
LANG             : en
LOCALE           : Slovak_Slovakia.1250

pandas           : 1.1.1
numpy            : 1.19.1

import perfplot

np.random.seed(123)


def GW(df):
    df['group'] = np.r_[True, df.Direction.values[1:] != df.Direction.values[:-1]].cumsum()
    df['count'] = df.groupby('group').cumcount()+1
    df['result'] = np.where(df['count'] >= 6, 'STRONG_'+df.Direction, np.nan) 
    df = (df[['Index','Direction','result']])
    return df

def ST(df):
    
    def rolling_window(a, window):
        shape = a.shape[:-1] + (a.shape[-1] - window + 1, window)
        strides = a.strides + (a.strides[-1],)
        return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)

    n = 6
    x = np.concatenate([[None] * (n-1), df['Direction'].to_numpy()])
    a = rolling_window(x, n)
    m1 = np.all(a == 'UP', axis=1)
    m2 = np.all(a == 'DOWN', axis=1)
    df['Output2'] = np.select([m1, m2], ['STRONG_UP','STRONG_DOWN'], None)
    return df

def make_df(n):
    direction = np.random.choice(['UP','DOWN'], n)
    df = pd.DataFrame({
        'Index': np.arange(len(direction)),
        'Direction': direction
    })
    return df

perfplot.show(
    setup=make_df,
    kernels=[GW, ST],
    n_range=[2**k for k in range(5, 25)],
    logx=True,
    logy=True,
    equality_check=False,
    xlabel='len(df)')

g

答案 1 :(得分:1)

一个带有numpy且没有应用功能的想法

import numpy as np
df['group'] = np.r_[True, df.Direction.values[1:] != df.Direction.values[:-1]].cumsum()
df['count'] = df.groupby('group').cumcount()+1
df['result'] = np.where(df['count'] >= 6, 'STRONG_'+df.Direction, np.nan) 
print(df[['Index','Direction','result']])

输出

    Index Direction     result
0   10887        UP        NaN
1   10888        UP        NaN
2   10889        UP        NaN
3   10890        UP        NaN
4   10891        UP        NaN
5   10892        UP  STRONG_UP
6   10893        UP  STRONG_UP
7   10894        UP  STRONG_UP
8   10895        UP  STRONG_UP
9   10896        UP  STRONG_UP
10  10897        UP  STRONG_UP
11  10898        UP  STRONG_UP
12  10899        UP  STRONG_UP
13  10900      DOWN        NaN
14  10901      DOWN        NaN
15  10902        UP        NaN
16  10903        UP        NaN
17  10904      DOWN        NaN
18  10905      DOWN        NaN
19  10906      DOWN        NaN

微基准化

出于好奇,我在笔记本电脑(Jupyter Notebook中的i5-7200u,8GB Ram)上运行了一个基准测试

  • Pandas Rolling&Apply(RA)
  • Pandas GroupBy&Numpy Where(GW)
  • 脾气暴躁(NP)

数据生成方式

direction = np.random.choice(['UP','DOWN'], 100000)
df = pd.DataFrame({
    'Index': np.arange(len(direction)),
    'Direction': direction
})

结果

          N=1000       |      N=10000      |     N=100000
RA   32.7 ms ± 3.05 ms |  271 ms ± 22.9 ms | 2.35 s ± 60.1 ms
GW   6.33 ms ± 230 µs  | 10.2 ms ± 51.4 µs | 63.8 ms ± 1.31 ms
NP   1.33 ms ± 32.5 µs | 8.21 ms ± 555 µs  | 74.4 ms ± 2.73 ms