我想创建一个“高价值指标”列,根据两个不同的值列显示“Y”或“N”。当Value_1为>时,我希望新列的“Y”为“Y” 1,000或Value_2> 15,000。波纹是表格,期望的输出将包括基于条件或条件的指标列。
ID Value_1 Value_2
1 100 2500
2 250 6250
3 625 15625
4 1500 37500
5 3750 93750
答案 0 :(得分:2)
console.log
|
or
使用带有链式条件的numpy.where
:
df['High Value Indicator'] = np.where((df.Value_1 > 1000) | (df.Value_2 > 15000), 'Y', 'N')
dictionary
或df['High Value Indicator'] = ((df.Value_1 > 1000) | (df.Value_2 > 15000))
.map({True:'Y', False:'N'})
print (df)
ID Value_1 Value_2 High Value Indicator
0 1 100 2500 N
1 2 250 6250 N
2 3 625 15625 Y
3 4 1500 37500 Y
4 5 3750 93750 Y
:
df = pd.concat([df] * 10000, ignore_index=True)
<强>时序:强>
In [76]: %timeit df['High Value Indicator1'] = np.where((df.Value_1 > 1000) | (df.Value_2 > 15000), 'Y', 'N')
100 loops, best of 3: 4.03 ms per loop
In [77]: %timeit df['High Value Indicator2'] = ((df.Value_1 > 1000) | (df.Value_2 > 15000)).map({True:'Y', False:'N'})
100 loops, best of 3: 4.82 ms per loop
In [78]: %%timeit
...: df.loc[((df['Value_1'] > 1000)
...: |(df['Value_2'] > 15000)), 'High_Value_Ind3'] = 'Y'
...:
...: df['High_Value_Ind3'] = df['High_Value_Ind3'].fillna('N')
...:
100 loops, best of 3: 5.28 ms per loop
In [79]: %timeit df['High Value Indicator'] = (df.apply(lambda x: 'Y' if (x.Value_1>1000 or x.Value_2>15000) else 'N', axis=1))
1 loop, best of 3: 1.72 s per loop
{{1}}
答案 1 :(得分:1)
尝试使用.loc和.fillna
df.loc[((df['Value_1'] > 1000)
|(df['Value_2'] > 15000)), 'High_Value_Ind'] = 'Y'
df['High_Value_Ind'] = df['High_Value_Ind'].fillna('N')
答案 2 :(得分:0)
使用map
df['High Value Indicator'] =((df.Value_1 > 1000) | (df.Value_2 > 15000)).map({True:'Y',False:'N'})
df
Out[849]:
ID Value_1 Value_2 High Value Indicator
0 1 100 2500 N
1 2 250 6250 N
2 3 625 15625 Y
3 4 1500 37500 Y
4 5 3750 93750 Y
答案 3 :(得分:0)
您也可以使用apply:
df['High Value Indicator'] = (
df.apply(lambda x: 'Y' if (x.Value_1>1000 or x.Value_2>15000) else 'N', axis=1)
)